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Abstract
Current deep learning faces major challenges for
action recognition tasks because of: 1) the huge
computational cost and 2) the inefficient learn-
ing. Hence, we develop a novel Spiking Neu-
ral Network (SNN) titled Spiking Gating Flow
(SGF) for such a dilemma. The developed system
consists of multiple SGF units which assembled
in a hierarchical manner. A single SGF unit in-
volves three layers: a feature extraction layer, an
event-driven layer, and a histogram-based train-
ing layer. By employing a dynamic visions sen-
sor gesture dataset, the results indicate that we
can achieve 87.5% accuracy which is comparable
with Deep Learning (DL), but at smaller train-
ing/inference data number ratio 1.5:1. And only a
single training epoch is required during the learn-
ing process. At last, we conclude the few-shot
learning paradigm of the developed network: 1)
a hierarchical structure-based network design in-
volves human prior knowledge; 2) SNNs for con-
tent based global dynamic feature detection.

1. Introduction
Deep Learning (DL) nowadays exerts a substantial im-
pact on a wide range of computer vision tasks such as
face recognition (Hu et al., 2015) and image classifications
(Krizhevsky et al., 2012). But it is still facing major chal-
lenges when processing information with high dimensional
spatiotemporal dynamics such as video action recognition.
This is because of the huge computational cost: the deep
neural networks have to capture dynamic information across
another timing dimensions, which requires significant com-
putational resources for the training stage (He et al., 2016).
One promising technology of sparsity (Liu et al., 2015; Wen
et al., 2016; Liu et al., 2021) can relieve the first issue of the
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intensive computing to some extend, but the training cost is
still enormous.

Spiking Neural Networks (SNNs) is an alternative candi-
date to perform spatiotemporal related tasks (Lobo et al.,
2020) with few-shot learning capability. Employing SNNs
for action recognition remains challenging since it lacks an
efficient learning algorithm. Recently SNN based learning
systems can be classified into three levels: a micro-level,
a middle-level and a macro-level system. A micro-level
based systems emphasis on utilizing low-level spiking neu-
ron computing characters such as a temporal process and
an integration-and-fire manner (Wu et al., 2018; Amir et al.,
2017; Lee et al., 2016; Zhang & Li, 2019; Caporale & Dan,
2008). For instances, (Wu et al., 2018) illustrates a Con-
volution Neural Network (CNN) based SNN for gesture
classification. By employing an event-driven sensor and a
TrueNorth neuromorphic chip, the system shows 178.8mW
power consumption and 96.49% accuracy. However, the
SNN higher-level computing entities such as attractor dy-
namics are missed in the system, which results in inefficient
learning.

A middle-level system indicates SNNs apply global dynamic
behaviors on the learning process (Eliasmith, 2005; Bekolay
et al., 2014; Voelker et al., 2019; Chilkuri et al., 2021; Luo
& Chen, 2020; Sussillo & Abbott, 2009). A Neural Engine
Framework (NEF) develops a method to build dynamic sys-
tems based on spiking neurons (Bekolay et al., 2014). Such
an approach leverages neural non-linearity and weighted
synaptic filter as computational resources.

A macro-level system includes both micro-level and mid-
dlelevel system’s advantages (Sussillo & Abbott, 2009;
Imam & Cleland, 2019). It combines detailed spiking neu-
ron characters and network dynamics together to form a
unique learning system. (Wu et al., 2022) proposed a spike-
based hybrid plasticity model for solving few-shot learning,
continual learning, and fault-tolerance learning problems, it
combines both local plasticity and global supervise informa-
tion for multi-task learning.

In this work we develop a novel macro-level system titled
Spike Gating Flow (SGF) for action recognition as shown
in Fig. 1. The system consists of multiple SGF units that
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connect in a hierarchical manner. An SGF unit consists of
three layers: 1) a feature extraction layer for global dynamic
feature detection; 2) an event-driven layer for generating
event global feature vectors; 3) a supervise-based histogram
training layer for online learning. By employing a Dynamic
Vision Sensor (DVS) (Posch et al., 2011) based gesture
dataset (Amir et al., 2017), the results demonstrate that the
developed SGF has great learning performance: the system
can approximately achieve the same level accuracy of 87.5%
as the DL but at a training/inference sample ratio 1.5:1
condition. More importantly, only one epoch is required
during the training. In summary, the contributions are as
follows:

• Algorithm aspect: We developed an efficient few-shot
learning system for gesture recognition, which behaves
like the biological intelligence: few-shot learning, en-
ergy efficient and explainable.

• Learning theory aspect: We conclude one few-shot
learning paradigm: 1) a hierarchical structure-based
network design involves with human prior knowledge;
2) SNNs for global dynamic feature detection.

2. The Spike Gating Flow
The Spike Gating Flow (SGF) is a new dynamic network to
achieve online few-shot training entities, which is inspired
from the Neural Engineering Framework (NEF) (Paulin,
2004) and brain assemble theories (Papadimitriou et al.,
2020). In brief, the few-shot learning capabilities rely on
prior knowledge embedded in the hierarchical architecture
and global feature computing. While the online computing
benefits from using dynamic spike pattern to encode both
data and control flow. Therefore, network different level
nodes are served as gates to pass or stop input data informa-
tion, and spikes are served as gate control signals. We have
concluded the key principles of SGF as below:

• Global feature representations: Network representa-
tions are defined by the combination of different SNNs
global movement features rather than pixel local fea-
tures.

• Tailor designed hierarchical network structure: A
hierarchical structure-based network for conditional
data-path execution. Depending on inputs, SGF unit
spike patterns are served as gates command to manipu-
late data-paths.

• Histogram based training algorithms: A global
feature-based histogram training adjusts output layer
weights based on history information.

Based on such principles, we design three SGF units and
carefully connect them into a two-level network. Each SGF
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Figure 1. The SGF network architecture. It mainly consists of
three SGF units: a spatial SGF unit A and temporal SGF units
B and C. A spatial SGF unit A has four SNNs with feature ID
index A-D (A: intensive activities at constrained left areas; B: mild
activities at plateau left areas; C: mild activities at plateau right
areas D: intensive activities at constrained right areas). A temporal
SGF unit B has two SNNs with feature ID index E-F (F: clockwise
movement; G: clockwise counter movement). A temporal unit C
has four SNNs with feature ID index H-K (H: top-down; I: bottom-
up; J: left-right; D: right-left). Also, the developed network has 10
output neurons corresponding to 10 action types.

unit has several corresponding spatial SNNs and temporal
SNNs, which targets on detecting different global features
(features with index A-I are shown at Fig. 1). Next there
is an event-driven layer that connects SNNs outputs to the
global feature neurons. This layer responses for generating
event feature vectors for the next layer training. Typically,
an event class will have several feature vectors types due
to the spatiotemporal variations. A feature vector can be
defined as a combination of active SNNs’ feature index,
which are represented by connecting active SNNs to one
global neuron. Therefore, for each action type, global fea-
ture neuron number is equal to the action type feature vector
type number. At last, an SGF unit has a fully connected
histogram-based training layer, in which each output neuron
connects to its all global feature neurons. After each training
trail, feature vector histogram numbers will be updated and
converted into corresponding weights. And the conversion
is a normalization process.

At an inference stage, a test sample generated feature vector
will be sent into all output neurons for calculating final
scores, which follows the equation as below:

Sm =
∑
j

(
Tm
j ∗ V

)
Lv

× w
j
m (1)
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Figure 2. (a)-(d) The histogram-based training example of an event type A; (e) The system online learning process example.

Where Sm is a testing sample score at mth output neuron;
wm is the jth feature vector weights of the mth output neu-
ron; Tm

j is the jth feature vector of the mth output neuron;
and V is the feature vector of the testing samples. The sym-
bol ∗ is a bit-wise NOR operation, and Lv is the bit length
of the feature vector. The key advances of such a learning al-
gorithm are that each data sample only requires one training
time and tiny computational resources for updating weights,
which enables rapid online learning behaviors.

A detailed example is illustrated at Fig.2. SNNs with feature
index A and D are active at the first training trail, which
forms a feature vector[A − D]. Hence a corresponding
global feature neuron is generated that connects to SNNs
with feature index A and D (connected with red lines). And
a feature vector histogram is also displayed on the Fig. 2(a)
left. After that, the feature vector[A−D] histogram values
will be converted into event type A output neuron weights.
It is clearly seen that the weight is one since there is only
one feature vector type (Fig. 2(a)). Meanwhile a knowledge
graph of event type A is produced for quantitative analysis
feature vector distributions (Fig. 2(a) right). At a 10th
training trail, there are three more feature vectors generated
[A− C,A,C] (Fig. 2(b) left red lines). This indicates that
there are in total four types of feature vector in the event
type A. Identically, corresponding feature vectors histogram
numbers [3, 1, 5, 1] will be transformed into event A neuron
outputs weights via a training layer. The feature vectors
distribution is also updated in the knowledge graph: a vector
with green lines indicates histogram values are decreased,
while a vector with red lines indicates histogram values are
raised. At the end of a 100th training trail, there is no new

feature vector appeared, which results of the same global
feature neuron number as the 10th training trail. The event
A output neuron weights are updated based on the current
histogram numbers as a final result. Similarly, the other
event types B and C follow the same training procedures.

At the inference stage, a test sample is given into the trained
network, which will generate a corresponding test feature
vector. And it will go through all the output neurons to
calculate the final scores. As shown at Fig. 2(d), there is a
trained network which contains three output neurons, whose
inference classification result is the maximum one among
these output neuron scores.

The online learning process example is shown at Fig. 2(e).
At an initial stage, event group A [3: right hand wave; 2: left
hand wave] is sent into the network for training. Since event
group A contains significant spatial features, only a spatial
SGF unit A is active and responsible for generating feature
vectors. After finishing learning event group A, event group
B [4: right arm clockwise, 5: right arm counter clockwise,
6: left arm clockwise, 7: left arm counter clockwise] is
sent into the network for sequential online learning. Identi-
cally, a temporal SGF unit B is active for recognizing clock-
wise/counter clockwise movements. At last, event group C
[1: hand clap, 2: left hand wave, 8: arm rolls, 9: air drum,
10: air guitar] is sent into network that contains complex
combinations of vertical and horizontal movements. The
rest of SGF unit C is active for learning such features. As it
can be seen, the final network architecture varies depending
on the learning targets.
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Name Type Learning Learning Model information Training cost Accuracy
method style Size Diff(×) OPs Diff(×) Epoch T/I ratio

Reservoir CSNN (George et al., 2020) SNN STDP Offline 3.17MB 88.7 ↑ - - 3.8:1 65.0%
Heterogeneity Network (Perez-Nieves et al., 2021) SNN SGD Offline 125KB 3.4 ↑ - - 3.8:1 82.1%

SCRNN (Xing et al., 2020) ANN2SNN BPTT Offline 732.34KB 20.0 ↑ 81.91M 9.9 ↑ 100 4.1:1 96.59%
SLAYER (Shrestha & Orchard, 2018) ANN2SNN BP Offline 1034.8KB 28.3 ↑ 79.8M 9.6 ↑ 739 3.8:1 93.64%
Converted SNN (Kugele et al., 2020) ANN2SNN BP Offline 500KB 13.7 ↑ 651M 78.7 ↑ 10 3.8:1 96.97%

ConvNet (Amir et al., 2017) DNN2SNN BP Offline 16.3MB 456 ↑ 946.82M 114 ↑ 250 3.8:1 96.5%
PointNet++ (Qi et al., 2017) DNN2SNN BP Offline 3.50MB 98 ↑ 440.0M 53.2 ↑ 250 3.8:1 97.08%

This work SNN SGF Online 36.58KB 8.27M 1 1.5:1 87.5%
”-” indicates the data can not be calculated or not mentioned in the corresponding paper.

Table 1. The comparison between state-of-the-art methods and the proposed SGF network.

3. SNNs Design
We have developed three SNN types that are SpatioTemporal
(ST) cores, spatial SNNs and temporal SNNs.

Spatiotemporal Core The equation of spatiotemporal core
is shown as below:

ST
t
m =

∫ t

t−∆STt

i+∆STs∑
i

d
t
m

θs

dt

θt

(2)

Where ST t
m is the outputs of the mth ST core at frame t

period; dtm is the outputs of the mth DVS sensor pixel at
frame t, which equals to -1 or +1; ∆ST s is a ST core spatial
detection range. The function [S]

θs equals 1 if S over spatial
thresholds θs. Regarding the temporal computations, ∆ST t

is an integration window and θt is a temporal threshold. The
function [T ]θt equals 1 if T is over spatial thresholds θt. As
a result of this, by adjusting above four parameters, we can
configure ST core filtering behaviors properly.

Spatial SNNs The spatial SNNs’ equation is as following:

SPm =

i+∆SPs∑
i

[∫ t=T

t=0

ST
t
mdST

]θi

θa

(3)

Where T is the total frame number of an event. ∆SP s is
the detection size and SPm is the mth spatial SNN outputs.
And the outputs can be a single bit or multiple bits. θi is an
intensity gate neuron threshold, θa is an area gate neuron
threshold.

Temporal SNNs The temporal SNNs‘ equation is shown
below:

TE
t
m =

nt−∆TEt∑
i

[
l
t
m − l

t−∆TEt
i

]θlθte

(4)

Where TEt
m is the outputs of the mth temporal neuron at

frame t; lti is the location of the ith temporal active neuron
at frame t, the location can be either vertical or horizon-
tal information depends on temporal SNN types. ∆TEt

is the comparison frame window; θl is the location index

threshold, nt−∆TEt is the active neuron number at frame
t−∆TEt. θte is the temporal neuron spiking threshold.

4. Results
System accuracy: A DVS gesture dataset (Amir et al.,
2017) (10 different gesture actions) is employed to verify
the system performance. In Tab. 1, we first compare the
developed network with two typical SNN-based gesture
recognition networks, a STDP based SNN (George et al.,
2020) and a SGD based SNN (Perez-Nieves et al., 2021).
Regarding ANN/DNN converted SNN, the developed net-
work can reach the same level of accuracy as a SLAYER
(Shrestha & Orchard, 2018), but a slight lower than Con-
vNet (Amir et al., 2017) 96.5%, SCRNN (Xing et al., 2020)
96.59%, Converted SNN (Kugele et al., 2020) 96.97% and
PointNet++ (Qi et al., 2017) 97.08%. However, the network
model size can be reduced by 456 times compared to the
ConvNet (Amir et al., 2017), and number of operations can
be reduced by 53 times compared to the PointNet++ (Qi
et al., 2017). Few-shot learning: Last but not the least, the
developed SGF only requires 1 training epoch at a condition
of training/inference ratio 1.5:1, which DL networks typical
require hundreds training epochs at a condition of 3.8:1.
This indicates the system training cost is significantly lower
than the DL based networks.

5. Conclusion
In this work we first employed a gesture classification task
as a proof of concept. The developed network can achieve
the same level of accuracy with the DL under a condition of
the training/inference data ratio 1.5:1. Also, only one train-
ing epoch is required during the learning periods. At last,
although the developed system capability has a considerable
distance compared to the current DL network, the system
shows the essential biological intelligence (e.g. few-shot
learning, energy efficient, explainable).
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