Is a Modular Architecture Enough?

Sarthak Mittal !> Yoshua Bengio !> Guillaume Lajoie ! 2

Abstract

Inspired from human cognition, machine learning
systems are now revealing advantages of sparser
and more modular architectures. Recent works
demonstrate that not only do some modular
architectures generalize well, but they also lead to
better out-of-distribution generalization, scaling
properties, learning speed, and interpretability.
A key intuition behind the success of such
systems is that the data generating system for
most real-world settings is considered to consist
of sparsely interacting parts, promoting the
use of similar inductive biases in the models.
However, the field has been lacking in a rigorous
quantitative assessment of such systems because
these real-world data distributions are complex
and unknown. Hence, we provide a thorough
assessment of common modular architectures,
through the lens of simple and known modular
data distributions. We highlight the benefits of
modularity and sparsity and reveal insights on
the challenges faced while optimizing modular
systems. We also propose evaluation metrics that
highlight the regimes in which these benefits of
modularity are substantial, as well as the sub-
optimality of current end-to-end learned modular
systems as opposed to their claimed potential.

1. Introduction

Deep learning research has an established history of drawing
inspiration from neuroscience and cognitive science (Baars,
1997; Dehaene et al., 2017; Bengio, 2017; Goyal & Bengio,
2020). It is thus no surprise that modularity and attention
have been leveraged, often together, in artificial networks in
recent years (Bahdanau et al., 2015; Andreas et al., 2016; Hu
etal., 2017; Vaswani et al., 2017; Kipf et al., 2018; Battaglia
et al., 2018; Goyal et al., 2019; 2021), with impressive
results. Although a number of recent results hinge on such
modular architectures (Graves et al., 2014; Andreas et al.,

"Mila *Universite de Montreal. Correspondence to: Sarthak
Mittal <sarthmit@gmail.com>.

DyNN workshop at the 39*" International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

2016; Hu et al., 2017; Vaswani et al., 2017; Kipf et al., 2018;
Santoro et al., 2018; Battaglia et al., 2018; Goyal et al., 2019;
2021; Locatello et al., 2020; Mittal et al., 2020; Madan
et al., 2021; Ke et al., 2021), the abundance of tricks and
proposed architectural modifications makes it challenging to
parse real, usable architectural principles. It is also unclear
whether the merits obtained by such Mixture-of-Experts
(MoE) based systems are actually due to good specialization,
as is often claimed, or due to other confounding factors.

In this work, we extend the analysis from (Rosenbaum et al.,
2019; Maziarz et al., 2019; Cui & Jaech, 2020; Csordas
et al., 2020) and propose a principled approach to evaluate,
quantify, and analyse common ingredients of modular
architectures. To do so, we develop a series of benchmarks
and metrics aimed at probing the efficacy of a wide range
of modular networks, where computation is factorized. This
reveals valuable insights and helps identify not only where
current approaches succeed but also when and how they
fail. Given the recent increased interest in sparse modular
systems (Rahaman et al., 2021; Fedus et al., 2021; Du et al.,
2021; Mittal et al., 2021), we believe that this work will
provide a test-bed for investigating the workings of such
models and allow for research into inductive biases that can
push such models to achieve good specialization. Through
detailed experiments and evaluation metrics, we make the
following observations and contributions:

* We develop benchmark tasks and metrics based on
probabilistically selected rules to quantify two impor-
tant phenomena in modular systems, the extent of col-
lapse and specialization.

* We distill commonly used modularity inductive biases
and systematically evaluate them through a series of
models aimed at extracting commonly used architec-
tural attributes (Monolithic, Modular, Modular-op and
GT-Modular models).

* We find that specialization in modular systems leads to
significant boosts in performance when there are many
underlying rules within a task, but not so much with
only few rules.

* We find standard modular systems to be often sub-
optimal in both their capacity on focusing on the right
information as well as in their ability to specialize,
suggesting the need for additional inductive biases.

Is a Modular Architecture Enough?

Training Setting
Regression / Classification

Rules

H

Choose a rule

True Label

2

Y =
Y c - E
N\ = é
g g%
E 53
@]
]
~ 0

Model chooses a §

Draw ~ N(0, 1) module softly z

Figure 1. Illustration of modularity evalutation framework.
Task configurations define the rules in the data-generating process
while model parameters define the kind of model to be trained.

2. Notation / Terminology

In this paper, we study how a family of modular systems
performs on a common set of tasks, prescribed by a syn-
thetic data generating process which we call rule-based data.
Below, we introduce the notation for key ingredients: (1)
rules and how they form rasks, (2) modules and how they
can take different model architectures, (3) specialization
and how we evaluate models. We refer the reader to Figure
1 for an illustration of our setup.

Rules. To properly understand modular systems and ana-
lyze their benefits and shortcomings, we consider synthetic
settings that allow fine-grained control over different as-
pects of task requirements. In particular, operations must
be learned on the data-generating distribution illustrated in
Equations 1-2, which we also refer to as rules.

X~ pa(-) (D
y|x,c~py(-]x,c). (2)

¢ ~ Categorical(-)

Here, we define a rule as an expert of this distribution, i.e.,
rule 7 is defined as p, (- | x, ¢ = r) where c is a categorical
variable representing context, and x is an input sequence.
For example, consider x = (1,2) and c to select between
addition and multiplication. Then, depending on c, the
correct output would be either y = 3 or y = 2. Systems
will be trained to infer y given ¢ and x. We amend the
above scheme to Multilayer Perceptron (MLP), Multi-Head
Attention (MHA) and Recurrent Neural Network (RNN)
based settings for concrete experimentation, the details of
which are presented in Appendix A.

Tasks. A task is described by a set of rules (data-generating
distribution) illustrated in Equations 1-2. Different sets of
{py(-1x,¢)}c imply different tasks. For a given number

Model Functional Form
Monolithic y = f(x,¢)
Modular Bjm’me: Jm (Xl ©)
V=2 me1Pm Im
Ym = fm(x,c)
Modular-op p = g(c)
~ R ~
y = Zm:1 Pm Ym
GT-Modular ym = fm(x,€)

y = 22:1 Cm Ym

Table 1. Functional Forms of Different Models. Exact functional
forms of the different models, given the data (x, ¢). Depending on
context, f and f,, are either MLP, MHA or RNN architectures.

of rules, we train models on multiple tasks to remove bias
towards any particular task.

Modules. A modular system comprises a set of neural

network modules, each of which can contribute to the

overall output. One can see this through the functional
M

formy =) . | PmYm, Where y,, denotes the output

and p,,, the activation of the m** module. Details about the

different modular systems are outlined in Appendix B.

From this point onwards, we exclusively use rules to
refer to the specialized components in the data-generating
process, and modules to refer to the experts that are learned
by a modular system. Further, for ease of quantitative as-
sessment, we always set the number of modules equal to the
number of rules, except when evaluating monolithic models
(with a single module). Modules can be implemented in
three different architectures, as described next.

Models. We consider four different class of models,
(a) Monolithic: one big model, (b) Modular: a system
comprising of modules which are softly selected based on
input, (c) Modular-op: similar to modular, but the selection
depends only on the code ¢ which is privileged information,
and (d) GT-Modular: a perfectly specializing system where
c directly guides selection of modules. The differences are
outlined in Table 1 and additional details are discussed in
Appendix B

Model Architectures. Model architectures describe the
choice of architecture considered for each module of a mod-
ular system, or the single module in a monolithic system
(MLP, MHA, or RNN). Importantly, the rules (or data gen-
erating distributions) are adapted to the model architecture,
and we often refer to them as such (e.g. MLP based rules).
Details about the data distributions and models considered in
this work are provided in Appendices A and B respectively.

Perfect Specialization. When training modular systems
on rule-based data, we would like the modules to specialize
according to the rules in the data-generating distribution.
Thus, there is an important need to quantify what constitutes
perfect specialization of the system to the data. To allow for

Is a Modular Architecture Enough?

0.40 Classification | ID

0.5
0.30

) =]
me g . / / 02/
éi/ 01 L //
40 ////. 45 /
30 / ./// ’ /,/'/:/
MHA g 4 5 %ﬁ/

25
10 /

25

Classification | OoD

Regression | ID Regression | 0oD

0.0070 0.07

—
0.0060 / /\./
2 0.05
§ 0.0050) /
— ———
003
/ I N
00040 ¢/ // e S N
0.0030 \-\/' 001 peemmmtee -
0.9 2.05
. / -
0 /
w
o P
)

05 / 1.85
03 / 175

- 4.0 -
08 s —

A\ N
\
.

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Rules Rules Rules Rules
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 2. Performance Results. Performance of different models with MLP (top row), MHA (middle row) and RNN (bottom row)
architectures against varying number of rules, evaluated both in-distribution and out-of-distribution. Modular systems generally outperform
monolithic ones (lower is better) but a typical end-to-end trained modular system (green) is neither able to concentrate on the right

information (compare with

easier quantification, we always consider an equal number
of modules and rules.

3. Metrics

To reliably evaluate modular systems, we propose metrics
that not only gauge the performance benefits of such sys-
tems but also evaluate them across two important modalities:
collapse and specialization, which we use to analyse the ex-
tent of resource allocation (in terms of parameters/modules)
and specialization respectively of a modular system.

Performance. The first set of evaluation metrics are based
on both in-distribution as well as out-of-distribution (OoD)
performance. These metrics capture how well the different
models perform on a wide variety of different tasks. For clas-
sification settings, we report the classification error while
for regression settings, we report the loss. We highlight our
performance based metrics in Figure 2, which are averaged
over multiple seeds, tasks and model capacities. We refer
the readers to Appendices C,D and G-I for details.

Collapse Metrics. We propose a set of metrics Collapse-
Avg and Collapse-Worst that quantify the amount of collapse

) nor able to get optimal specialization (compare with blue).

suffered by a modular system. Collapse refers to the degree
of under-utilization of the modules. An example of this is
illustrated in Figure 4 in the Appendix. We consider the
setting where all the data rules are equi-probable and the
number of modules in the model are set to be the same as
the number of data rules, to R.

Collapse-Avg. Let p(m) be the marginal probability
distribution of activation of module m. Then, C4 =
2 Zfzzl max (0, — p(m)) captures the amount of
under-utilization of all the modules of the system. A lower
number is preferable for this metric, as a lower number
demonstrates that all the modules are equally utilized.

Collapse-Worst. Given the same setting as above, Cyy =
1 — R min,, p(m) captures the amount of under-utilization
of the least used module of the system. Again, a low number
is preferable here.

Specialization Metrics. To complement collapse metrics,
we propose, (1) Alignment, (2) Adaptation and (3) Inverse
Mutual Information to quantify the amount of specialization
obtained by modular systems. These metrics are aimed at
capturing how well the modules specialize to the rules, i.e.,

Is a Modular Architecture Enough?

Collapse-Avg 10 Collapse-Worst Alignment Adaptation Inverse Mutual Information
05 1.0 035 1.0
E '
3 06) N 0.25 :
©03 :) , 0.6 : M o6 :
B 0.15 ; .
S f A f f \
! 0.2 '
0.1 | 0.2 | . 0.05 | 0.2 -
4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
Rules
B GT-Modular Modular-op s Modular ~ W= Random

Figure 3. Metrics against Increasing Number of Rules. Evaluation of different modular systems through collapse (first two columns)
and specialization (next three columns) (lower is better) under different number of rules.

whether different modules align to different rules.

Alignment. In a modular system, one can obtain the activa-
tion matrix A, where A,.,, denotes p(module = m | rule =
r), i.e., the probability of activation of module m condi-
tioned on rule r.Then, s; = minpes, d (A, P) defines the
distance of the modular system to perfect specialization,
where d denotes the normalized L, distance and S g denotes
the space of permutation matrices over I objects. sq4 — 0
implies that each module specializes to a unique rule, sig-
nifying perfect specialization. An efficient computation of
this metric is done through the Hungarian algorithm (Kuhn,
1955) and a lower score implies better specialization.

Let the joint dis-
activation probabil-
Then, we define

1 (m,r)
oz R Ep(m.r) logm , where a

low inverse mutual information metric is preferable as it
denotes that the modules are more specialized to the rules as
opposed to multiple modules contributing to a single rule.

Inverse Mutual Information.
tribution p(m,r) denote the
ity of module m on rule r.

Simvr = 1 —

Adaptation. Let P be a distribution over the R-dimensional
simplex and p(-) the distribution over rules (not equi-
probable in this metric) and ¢(-) the corresponding dis-
tribution obtained over modules, which is dependent on
p(-). We then define S4 = Epp {Zf;l ‘p(ﬂ) —q(my;)],
where 7; and 7i; are such that p(71) < ... < p(#r) and
q(m1) < ... < q(7hg) and P is a dirichlet distribution.
This metric can be understood as the amount by which the
modules adapt to changes in the rule distributions. A low
adaptation score implies that the marginal distribution of the
modules adapt well according to the distribution of the rules.

We refer the readers to Figure 3 which shows that the
problems of collapse and specialization increase with the
number of rules, and is often mitigated in the presence of
privileged information (Modular-op). Note that uniform
random activation patterns lead to low collapse metrics but
high alignment, adaptation and inverse mutual information
metrics, implying little collapse but poor specialization,
as expected. On the contrary, GT-Modular systems lead
to low collapse, alignment, adaptation and inverse mutual

information, denoting little collapse and good specialization,
which is expected since specialization is given as oracle.

4. Conclusion and Discussion

We provide a benchmark suitable for the analysis of
modular systems and provide metrics that not only evaluate
them on in-distribution and out-of-distribution performance,
but also on collapse and specialization. Through our
large-scale analysis, we uncover many intriguing properties
of modular systems and highlight potential issues that could
lead to poor scaling properties of such systems.

Perfect Specialization. We discover that perfect spe-
cialization indeed helps in boosting performance both
in-distribution and out-of-distribution, especially in the
regime of many rules. On the contrary, monolithic systems
often do comparatively when there are only a few rules.

End-to-End Trained Modular systems. While Modular
systems outperform Monolithic ones, the margin of
improvement is often small since these models do not
discover perfect specialization. In fact, the problem of
poor specialization and high collapse becomes worse with
increasing number of rules, even when privileged contextual
information is used explicitly, as in Modular-op.

In summary, through systematic and extensive experi-
ments, this work shows that modularity, when supporting
good and distributed specialization (i.e. little collapse),
can outperform monolithic models both in and out of
distribution testing. However, we also find that although
perfectly specialized solutions are attainable by modular
networks, end-to-end training does not recover them, often
even with explicit information about task context (as in
Modular-op). An important conclusion is that additional
inductive biases are required to learn adequately specialized
solutions. These could include regularization schemes
(e.g. load-balancing (Fedus et al., 2021)) or optimization
strategies (e.g. learning rate scheduling), among others, to
promote specialization. We refer the reader to Appendix E
for further discussion on these exciting prospects. We
believe the framework proposed in this work is ideal to
drive research into such inductive biases and a necessary
stepping stone for applications of these designs at scale.

Is a Modular Architecture Enough?

Acknowledgements

SM would like to acknowledge the support of UNIQUE and
IVADO towards his research, as well as Calcul Québec and
Compute Canada for providing the computing resources.
YB and GL acknowledge the support from Canada CIFAR
Al Chair Program, as well as Samsung Electronics Co., Ldt.
GL acknowledges NSERC Discovery Grant [RGPIN-2018-
04821].

References

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural
module networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 39-48,

2016.

Baars, B. J. In the theatre of consciousness. global
workspace theory, a rigorous scientific theory of con-
sciousness. Journal of Consciousness Studies, 4(4):292—
309, 1997.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate.
ICLR’2015, arXiv:1409.0473, 2015.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y. The consciousness prior.
arXiv:1709.08568, 2017.

arXiv preprint

Csordas, R., van Steenkiste, S., and Schmidhuber, J. Are
neural nets modular? inspecting functional modular-
ity through differentiable weight masks. arXiv preprint
arXiv:2010.02066, 2020.

Cui, L. and Jaech, A. Re-examining routing networks for
multi-task learning. 2020.

Dehaene, S., Lau, H., and Kouider, S. What is conscious-
ness, and could machines have it? Science, 358(6362):
486-492, 2017.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D.,
Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., et al.
Glam: Efficient scaling of language models with mixture-
of-experts. arXiv preprint arXiv:2112.06905, 2021.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Goyal, A. and Bengio, Y. Inductive biases for deep
learning of higher-level cognition. arXiv preprint
arXiv:2011.15091, 2020.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine,
S., Bengio, Y., and Scholkopf, B. Recurrent independent
mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beau-
doin, P., Heess, N., Mozer, M., and Bengio, Y. Neural
production systems. arXiv preprint arXiv:2103.01937,
2021.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko,
K. Learning to reason: End-to-end module networks
for visual question answering. In Proceedings of the

IEEE International Conference on Computer Vision, pp.
804-813, 2017.

Ke, N. R., Didolkar, A. R., Mittal, S., Goyal, A., Lajoie,
G., Bauer, S., Rezende, D. J., Mozer, M. C., Bengio, Y.,
and Pal, C. Systematic evaluation of causal discovery in
visual model based reinforcement learning. 2021.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems.
arXiv preprint arXiv:1802.04687, 2018.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83—
97, 1955.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. arXiv
preprint arXiv:2006.15055, 2020.

Madan, K., Ke, R. N., Goyal, A., Schélkopf, B. B., and Ben-
gio, Y. Fast and slow learning of recurrent independent
mechanisms. arXiv preprint arXiv:2105.08710, 2021.

Masoudnia, S. and Ebrahimpour, R. Mixture of experts: a
literature survey. Artificial Intelligence Review, 42(2):
275-293, 2014.

Maziarz, K., Kokiopoulou, E., Gesmundo, A., Sbaiz, L.,
Bartok, G., and Berent, J. Flexible multi-task net-
works by learning parameter allocation. arXiv preprint
arXiv:1910.04915, 2019.

Mittal, S., Lamb, A., Goyal, A., Voleti, V., Shanahan, M.,
Lajoie, G., Mozer, M., and Bengio, Y. Learning to com-
bine top-down and bottom-up signals in recurrent neu-
ral networks with attention over modules. In Interna-
tional Conference on Machine Learning, pp. 6972—-6986.
PMLR, 2020.

Mittal, S., Raparthy, S. C., Rish, I., Bengio, Y., and Lajoie,
G. Compositional attention: Disentangling search and
retrieval. arXiv preprint arXiv:2110.09419, 2021.

Is a Modular Architecture Enough?

Rahaman, N., Gondal, M. W., Joshi, S., Gehler, P., Bengio,
Y., Locatello, F., and Scholkopf, B. Dynamic inference
with neural interpreters. Advances in Neural Information
Processing Systems, 34, 2021.

Rosenbaum, C., Cases, 1., Riemer, M., and Klinger, T. Rout-
ing networks and the challenges of modular and compo-

sitional computation. arXiv preprint arXiv:1904.12774,
2019.

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski,
M., Weber, T., Wierstra, D., Vinyals, O., Pascanu, R., and
Lillicrap, T. Relational recurrent neural networks. arXiv
preprint arXiv:1806.01822, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Yuksel, S. E., Wilson, J. N., and Gader, P. D. Twenty
years of mixture of experts. IEEE transactions on neural
networks and learning systems, 23(8):1177-1193, 2012.

Is a Modular Architecture Enough?

A. Data Generating Process

Since we aim to study modular systems through synthetic
data, here we flesh out the data-generating processes
operating based on the rules scheme described above (see
Equations 1-2). We use a simple Mixture-of-Experts (MoE)
(Yuksel et al., 2012; Masoudnia & Ebrahimpour, 2014)
styled data-generating process, where we expect different
modules to specialize to the different experts in the rules. It
is important to note that this system is slightly different from
the traditional flat MoE since the experts are more plug-and-
play and can be composed to solve a particular problem. As
an example, if we consider a mixture of recurrent systems,
different tokens (time-points) in the input sequence can
undergo computations according to different rules (e.g.
a switching linear dynamical system), as opposed to the
choice of expert being governed by the whole sequence.

We now look at more specific setups of the data-generating
systems in consideration, the general template of which was
outlined above. To do so, we explain the data-generating
processes amenable to our three model architectures: MLP,
MHA, and RNN. Additionally, each of the following tasks
have two versions: regression, and classification. These are
included to explore potential differences these distinct loss
types may induce.

c~U{1,R} 3)
x1,%2 25 N(0,1) 4)
Y = Xy + ﬁcx2 (5)

MLP. Here, we define the data scheme that is amenable for
learning of modular MLP-based systems. In this synthetic
data-generating scheme, a data sample consists of two
independent numbers and a choice of rule being sampled
from some distribution. Different rules lead to different
linear combinations of the two numbers to give the output.
That is, the choice of linear combination is dynamically
instantiated based on the rule drawn. This is mathematically
formulated in Equations 3-5, where «. and . are the data
parameters and y denotes the label for the regression tasks
and sign(y) for the classification tasks.

Hence, the data comes from a MoE distribution where ¢
denotes which linear combination governs the conditional
distribution p, (- | X1,X2, ¢). When training modular archi-
tectures on such data, one expects each module in the trained
system to specialize according to a unique rule.

iid

c, ~U{l, R} (6)
Anr, q;mvnm V;w < (Oa I) (7
Sy = H;gn d (ann7 qicn) (8)

S/n = 121711517111 (qiv,cn) qficn) 9
Yn = Qc, Vsycp + Bcn véiLC” (10)

MHA. Now, we define the data scheme that is tuned for
learning in modular MHA based systems. Essentially, a
MHA module can be understood through a set of searches
(query-key interactions), a set of corresponding retrievals
(values) and then some computation of the retrieved val-
ues, as explained by Mittal et al. (2021). Accordingly, we
design the data-generating distribution with the following
properties: Each rule is composed of a different notion
of search, retrieval and the final linear combination of the
retrieved information respectively. We mathematically de-
scribe the process in Equations 6-10, where n = 1,..., N
andr = 1, ..., R with N as the sequence length and R the
number of rules. We denote the tuple (qn,, Q),,., Vir, Vi)
as x,,. Further, y,, denotes the label for the regression tasks
while for classification, we consider the categorical label to

be sign(yy).

Thus, we can see that c,, denotes the rule for the n*" token.
This rule governs which two tokens are closest to the n*”
token, demonstrated as s,, and s/,. It also governs what
features are retrieved from the searched tokens, which are
Vs,c, and vg . . These retrieved features then undergo a
rule-dependent linear combination (on c,,). Here, too, when
training a modular MHA architecture, we want each MHA
module in the system to be able to specialize to a unique
MHA rule in the data system.

iid

c, ~U{1, R} (1n
X, S N(0,1) (12)
Sp = Acnsn—l + Bcnxn (13)
Yn = WT Sn (14)

RNN. For recurrent systems, we define a rule as a kind of
linear dynamical system, where one of multiple rules can
be triggered at any time-point. Mathematically, this process
can be defined through Equations 11-14, where n = 1,...N,
with N describing the sequence length. Each rule thus
describes a different procedure for the update of the state s;
as well as the effect of the input x; to the state. Thus, we can
see that c,, denotes the rule to be used at the n*" time-point.
Further, y,, denotes the label for the regression tasks while
for classification, we consider the labels as sign(y,,).

Hence, in all settings, the data comes from a MoE distribu-
tion where c denotes the rule and governs the conditional
Py (-] %, c). When training modular architectures on such
data, one expects each module in the trained system to spe-
cialize according to a unique rule. Our aim is to use these
synthetic rule-based data setting to study and analyse mod-
ular systems and understand whether end-to-end trained
modular systems concentrate on the right information to

Is a Modular Architecture Enough?

specialize based on, i.e. based on ¢, whether they do learn
perfect specialization and whether perfect specialization ac-
tually helps in these settings. To properly understand this,
we detail the different kinds of models considered in Section
B as well as the different metrics proposed in Section C to
analyse trained systems.

For this work, we limit our analysis to infinite-data regime
where each training iteration operates on a new data sample
Future work would perform similar analysis in the regime
of limited data.

B. Models

Several works claim that end-to-end trained modular sys-
tems outperform their monolithic counterparts, especially
in out-of-distribution settings. However, there is a lack
of step-by-step analysis on the benefits of such systems
and whether they actually specialize according to the data
generating distribution or not. To perform an in-depth
analysis, we consider four different types of models that
allow for varying levels of specialization, which are:
Monolithic, Modular, Modular-op, and GT-Modular. We
give the formulations for each of these models below and
then discuss the different analysis we can perform through
them. We also illustrate these models in Table 1 and
depending on the data-generating procedure described in
Appendix A, f and f,,, can be implemented as either MLP,
MHA or RNN cells in this work.

Monolithic. A monolithic system is a big neural network
that takes the entire data (x,c) as input and makes
predictions ¥ based on it. There is no inductive bias about
modularity or sparsity explicitly baked in the system and
it is completely up to back-propagation to learn whatever
functional form is needed to solve the task. An example of
such a system is a traditional Multi-Head Attention (MHA)
based system, eg. a Transformer.

Modular. A modular system is composed of a number
of modules, each of which is a neural network of a given
architectural type (MLP, MHA, or RNN). Each module m
takes the data (x, c) as input and computes an output ¥,
and a confidence score, normalized across modules into
an activation probability p,,. The activation probability
reflects the contribution of each module’s output to the final
output y of the system. Thus, there is an explicit baked-in
inductive bias of modularity but it is still up to system-wide
back-propagation to figure out the right specialization. An
example of such a system is a mixture of MLPs or reusable
RNN:gs, reusable across different time/positions.

Modular-op. A modular-op (for operation only) system
is very similar to the modular system with just one small
difference. Instead of the activation probability p,, of
module m being a function of (x,c), we instead make

Ground Truth Rules: 4 | Modules: 4

0.8

0.6

Rule

-04

=02

-0.0
1 2 3 4

Module

Figure 4. Example of Collapse. Entry (7, j) denotes the activation
probability of module j on rule ;. We see that Module 3 never
activates, signifying collapse, while Module 4 covers two rules.

Monolithic

Modular-op 20.4% Monolithic

GT-Modular Modular

Modular

Figure 5. Ranking Metric. Spread indicates the number of exper-
iments where the corresponding model did better. Plots include
Left: All models, Right: Models trained without explicit rule-
based module selection. Note that (a) explicit specialization (GT-
Modular) helps, and (b) Modular systems outperform Monolithic
but with small margin.

sure that the activation is decided only by the rule context
c. Hence, unlike modular systems, modular-op cannot be
distracted by x in figuring out specialization of different
modules. Even though the operation required is explicitly
provided, this model still needs to learn specialization
through back-propagation.

GT-Modular. A GT-modular system (for ground truth)
serves as an oracle benchmark, i.e., a modular system that
specializes perfectly. In particular, the activation probability
p,.s of modules are just set according to ¢, which is the
indicator present in the data (x, ¢). Thus, this is a perfectly
specializing system that chooses different modules sparsely
and perfectly according to the different data rules.

Given enough capacity, we can see that there is a hierarchy
of models based on the functions they can implement, with
GT-Modular C Modular-op C Modular C Monolithic.
Put differently, models from Monolithic to GT-Modular
increasingly incorporate the inductive biases for modularity
and sparsity. This is proved in Appendix F by inspecting
the function classes implemented by these models.

In what follows, we want to analyse the benefits of having

Is a Modular Architecture Enough?

simple end-to-end trained modular systems as opposed to
monolithic ones. This can be understood through a compar-
ison of various performance based metrics between Mono-
lithic and Modular models, explained in the next section.
This will allow us to answer if a modular architecture is
always better for various distinct rule-based data generating
systems. For instance, a comparison between the Modular
and Modular-op models will show whether the standard
modular systems are able to focus on the right informa-
tion and ignore the distractors in driving specialization. To
study this, we will look at performance as well as collapse
and specialization metrics between these class of models.
A comparison between GT-Modular and Modular-op will
show the benefits of having a sparse activation pattern with
proper resource allocation of modules as opposed to an
end-to-end learned specialization on the right information
(without distractors).

Finally, we note that GT-Modular is a modular system
which obtains perfect specialization. Through this model,
we aim to analyse whether perfect specialization is in-fact
important and if so, how far are typical modular systems
from obtaining similar performance and specialization
through end-to-end training. We now describe the metrics
used for these evaluations.

C. Metrics

To reliably evaluate modular systems, we propose a suite
of metrics that not only gauge the performance benefits of
such systems but also evaluate them across two important
modalities: collapse and specialization, which we use to
analyse the extent of resource allocation (in terms of param-
eters/modules) and specialization respectively of a modular
system.

Performance. The first set of evaluation metrics are based
on performance of the models in both in-distribution as well
as out-of-distribution (OoD) settings. These metrics capture
how well the different models perform on a wide variety
of different tasks. For classification settings, we report the
classification error while for regression settings, we report
the loss.

In-Distribution. This refers to the in-distribution perfor-
mance, evaluated by looking at both the final performance
as well as convergence speeds of the different models.

Out-of-Distribution. This refers to the OoD performance
of different models. We consider very simple forms of
OoD generalization: either (a) change in distribution of x
by increasing variance, or (b) different sequence lengths,
wherever the possibility presents (eg. in MHA and RNN).

Collapse Metrics. We propose a set of metrics Collapse-
Avg and Collapse-Worst that quantify the amount of collapse

suffered by a modular system. Collapse refers to the degree
of under-utilization of the modules. An example of this is
illustrated in Figure 4, where we can see that Module 3 is
never used. We consider the setting where all the data rules
are equi-probable and the number of modules in the model
are set to be the same as the number of data rules, to R.
High collapse thus refers to under-utilization of resource
(parameters) provided to the model, illustrating that certain
modules are never being used and concurrently meaning
that certain modules are being utilized for multiple rules.

R & 1
Cy = 1 z:: max (o, = —p(m)) (15)

m=1

Collapse-Avg. Given the data-setting with R equi-probable
rules, and hence R modules in the model, we let p(m) be the
marginal probability distribution of activation of module m.
Then, we define the Collapse-Avg metric C 4 as in Equation
15, where % is for normalization. This metric captures
the amount of under-utilization of all the modules of the
system. A lower number is preferable for this metric, as a
lower number demonstrates that all the modules are equally
utilized.

Cw =1— R minp(m) (16)

m
Collapse-Worst. Given the same data and model setting
as above, the Collapse-Worst metric Cyy is defined as in
Equation 16. This metric captures the amount of under-
utilization of the least used module of the system. Again, a
low number is preferable as it signifies that even the least
used module is decently utilized by the model.

Specialization Metrics. To complement collapse metrics,
we also propose a set of metrics, (1) Alignment, (2) Adap-
tation and (3) Inverse Mutual Information to quantify the
amount of specialization obtained by the modular systems.
We again consider the setting of equi-probable rules and
the same number of modules and rules R. These metrics
are aimed at capturing how well the modules specialize to
the rules, that is, whether different modules stick to dif-
ferent rules (good specialization) or whether all modules
contribute almost equally to all rules (poor specialization).

sq = min d(A,P)

PeSkr {17)

Alignment. Given a modular system trained on rule-based
data with R rules and modules, one can obtain the activation
matrix A, where A,.,,, denotes p(module = m |rule =),
that is, the probability of activation of module m condi-
tioned on rule r. Further, given a distance metric d(-, -) over

Is a Modular Architecture Enough?

the space of matrices, perfect specialization can be quanti-
fied through Equation 17, where S denotes the space of
permutation matrices over R objects. We consider d(-, -)
as a normalized L, distance. The score s; demonstrates
the distance between the activation matrix A and its clos-
est permutation matrix, with distances computed according
to the metric d(-,-). Note that s4 — 0 implies that each
module specializes to a unique rule, thereby signifying per-
fect specialization. Since the space of permutation matrices
Sk grows exponentially at the rate of @(R!), computing
sq naively soon becomes intractable. However, we use the
Hungarian algorithm (Kuhn, 1955) to compute it in polyno-
mial time. This metric shows how close the learned modular
system is to a perfectly specializing one, where a low score
implies better specialization.

_pm,r)
Fan |8] 09

Inverse Mutual Information. Given R as the number of rules
and modules and let the joint distribution p(m, r) denote
the activation probability of module m on rule r, the Inverse
Mutual Information metric Sysy is defined as in Equation
18. A low inverse mutual information metric is preferable as
it denotes that the modules are more specialized to the rules
as opposed to multiple modules contributing to a single rule.

S =1-—
IMI log R

Sa=E,p

R
> [p(ro) = ati)] (19

=1

Adaptation. Let R be the number of rules and modules and
‘P a distribution over the R-dimensional simplex. Further,
let p(-) be the distribution over rules (not equi-probable
in this metric) and ¢(-) the corresponding distribution ob-
tained over the modules. Note that the distribution ¢(-) is
dependent on p(-). Given these distributions, we define
the Adaptation metric S 4 in Equation 19, where 7; and 1m;
are such that p(1) < p(fs) < ... < p(ir) and g(in;) <
q(ma) < ... < q(mpr) and P is a dirichlet distribution.

This metric can be understood as the amount by which the
modules adapt (signified through the distribution ¢(-)) to
changes in the rule distributions (which are p(-) sampled
from P). The matching between the rule and module is
obtained through a simple sort as defined above. A low
adaptation score implies that the marginal distribution of the
modules adapt well according to the distribution of the rules.
That is, when a rule is weakly present in the data, there exists
a module which weakly contributes in the corresponding
output, averaged over multiple different rule distributions.

To understand these metrics, note that uniform random
activation patterns for the modules lead to low collapse

metrics but high alignment, adaptation and inverse mutual
information metrics, implying little collapse but poor
specialization, as expected. On the other hand, GT-Modular
systems necessarily lead to low collapse metrics as well as
low alignment, adaptation and inverse mutual information,
denoting little collapse and good specialization, which is
expected since specialization is given as oracle.

D. Experiments

We are now ready to report experiments on the models out-
lined in Section B with associated data generation processes
described in Appendix A. For each level of modularity
(i.e. Monolithic, Modular, Modular-op, GT-Modular), we
analyse models learning over five different number of rules,
ranging from few (2) to many (32), five different model
capacities (number of parameters) and two different training
settings, i.e. regression and binary classification. To remove
any biases towards particular task parameters (e.g. a., ¢
in Equation 5), we randomly select new rules to create five
different tasks per setting and, train five seeds per task. In
essence, we train ~20,000 models' to properly analyse the
benefits of modularity, the level of specialization obtained
by end-to-end trained systems, the impact of number of
rules and the impact of model capacity.

Performance. We refer the readers to Figure 5 for a com-
pressed overview on the performance of various models. We
see that GT-Modular system wins most of the times (/eft),
indicating the benefits of perfect specialization. We also
see that between standard end-to-end trained Modular and
Monolithic systems, the former outperforms but not by a
huge gap. Together, these two pie charts indicate that current
end-to-end trained modular systems do not achieve good spe-
cialization and are thus sub-optimal by a substantial margin.

We then look at the specific architectural choices (MLP,
MHA and RNN cells for functions f and f,, in Table 1)
and analyse their performance and trends across increasing
number of rules. Figure 2 shows that while there are
concrete benefits of a perfectly specializing system (GT-
Modular) or even models that know what information to
drive specialization from (Modular-op), typical end-to-end
trained Modular systems are quite sub-optimal and not able
to realize these benefits, especially with increasing number
of rules which is where we see substantial benefits of
good specialization (contrast Modular vs GT-Modular and
Modular-op). Moreover, while such end-to-end Modular
systems do generally outperform the Monolithic ones, it
is often only by a small margin.

We also see the training pattern of different models averaged
over all other settings, with the average containing error

' All models are trained on single V100 GPUs, each taking a
few hours.

Is a Modular Architecture Enough?

045 Collapse-Avg Collapse-Worst 09
0.7
035 07
<
S 05
A 025) 05
L
= " 03
Lois 03
0.05 0.1 0.1

mm GT-Modular

Alignment

035
1.0
0.25
06
) 0.15
X -
0.05 0.2

Modular-op

Adaptation Inverse Mutual Information

s Modular mmm Random

Figure 6. Metrics for Different Models. While end-to-end training of activation decisions leads to reduced collapse (first two columns)
and better specialization (next three columns) (lower is better) than random activations, it is still far from a perfectly specializing system.
This signifies that the models are not able to learn good specialization and actually suffer from increased collapse when learned solely

through back-propagation.

25

20

Performance

3

0 100000 200000 300000 400000 500000
Iterations
—— GT-Modular ~ —— Modular
—— Modular-op —— Monolithic

Figure 7. Training Curve. Averaged over different model archi-
tectures, training settings, model capacities and number of rules.
We see that end-to-end trained modular systems are still far from
the benefits of perfect specialization.

for classification and loss for regression, in Figure 7. We
can see that good specialization not only leads to better
performances but also faster training.

Collapse. We evaluate all the models on the two collapse
metrics outlined in Section C. Figure 3 shows the two
collapse metrics, Collapse-Avg and Collapse-Worst, for
different models against varying number of rules, averaged
over the different model architectures (MLP, MHA and
RNN), training settings (Classification and Regression),
model capacities, tasks and seeds. First, we notice that a
Random activation baseline and the GT-Modular system
do not have any collapse, which is expected. Next, we
notice that both Modular and Modular-op suffer from the
problems of collapse and this problem becomes worse
with increasing number of rules. Figure 6 further shows
similar information averaged over the number of rules too,
highlighting that Modular-op has less collapse than Modular

in general. However, we still see that the problem of
collapse is significant whenever back-propagation is tasked
with finding the right activation patterns, especially in the
regime of large number of rules. This clearly indicates the
need for investigation into different forms of regularizations
to alleviate some of the collapse problems.

Specialization. Next, we evaluate through the proposed
specialization metrics in Section C whether the end-to-end
trained modular systems actually specialize according to
the data-generating distribution. Figure 3 shows the three
specialization metrics, Alignment, Adaptation and Inverse
Mutual Information, for different models against varying
number of rules, again averaged over different model archi-
tectures, training settings, model capacities, tasks and seeds.
As expected, we see that the Random activation baseline has
poor specialization (high metrics) while the GT-Modular
system has very good specialization. We further see that
end-to-end trained Modular systems as well as Modular-op
suffer from sub-optimal specialization, as indicated by the
high metrics. As with collapse, we again see that it becomes
harder to reach optimal specialization with increasing
number of rules. Figure 6 shows that while Modular-op
has marginally better specialization than standard Modular
systems, they are indeed quite sub-optimal when compared
to a perfectly specializing system, i.e. GT-Modular.

We refer the readers to Appendix G, H and I for training
details as well as additional experiments regarding the ef-
fect of model sizes for MLP, MHA and RNN architectures
respectively.

E. Future Work

We perform large-scale analysis on a variety of modular
systems through simple rule-based data generating distribu-
tions. Through our analysis, we uncover several interesting
insights into the regimes where modularity, sparsity and
perfect specialization helps and how sub-optimal standard
modular systems are in terms of collapse and specialization.

Is a Modular Architecture Enough?

We believe that this is a first step towards better benchmark-
ing and understanding of modular systems. However, there
are still a number of important and interesting directions
that have not been explored in this work. We discuss some
of these important future directions here.

Stochasticity. In Appendix A, we see that we consider deter-
ministic formulations of p, (- | x, ¢) and there is no labeling
noise. One direction of exploration is to extend the settings
considered here to noisy domains and investigate whether
similar analyses still hold.

Hard Attention. 1In this work, we only considered sim-
ple soft-attention based activation decisions in end-to-end
trained modular systems described in Section B. An inter-
esting future work involves benchmarking hard-attention
based modular systems to explore whether they perform
or specialize better, and also if the problem of collapse is
exacerbated in such models.

Finite-Data Regime. Since this is the first work that pro-
vides such an analysis in this field, we decided to stick to the
simplest setting of infinite-data regime to limit the effects
of overfitting. We believe that a useful future work would
be to consider a low-data regime to see whether the induc-
tive biases of modularity and sparsity lead to even better
generalization when there is only little data to learn from.

Complex Rules. While we consider the simplest setting for
each rule, one could consider more complex distributions
where x is also conditional on the rule ¢ and where the
labeling function, denoted by y in Appendix A, is a com-
plex non-linear function instead of a simple linear function.
Analysis on trends between modular and monolithic models
with increasing complexity of rules would not only lead
to better understanding of such systems but also bridge it
closer to real-world settings.

Harder OoD Settings. Modular systems are often shown
to lead to better OoD generalization. In this work, we con-
sidered the simplest possible OoD settings that were often
heavily correlated with in-distribution performances. Future
work should investigate more complex OoD settings where
either the support of x is dis-joint between in-distribution
and OoD, or there are combinatorial computations required
to obtain labels y, such that certain rule permutations are
with-held in training and used for evaluations.

Better Inductive Biases. A very important next step is to
discover and investigate various inductive biases and regu-
larization procedures that bridge the gap between the current
modular systems and the perfectly specializing systems. Our
benchmark provides the perfect opportunity that allows for
analysis into the levels of specialization of different models.

The above points highlight only some of the immediate
future works that would paint a richer and more intricate

picture of what current modular systems are capable of,
and what are the benefits we can obtain through perfect
specialization.

Apart from extensions to the rule and module settings, we
believe that it would also be important to investigate further
into the quantitative evaluation metrics that we consider, in
particular -

Generalizing to non equi-probable rules. Our current met-
rics on collapse and specialization rely on the need for
equi-probable rules in the data generating distribution. It
would be important to extend this to a more general setting
where certain rules could be present more than the others.

Different number of rules and modules. For ease of quanti-
tative evaluation, we only consider a well-specified system
where the number of rules and the number of modules are
kept the same. An important next step is to formulate the
collapse and specialization metrics to work in the settings
where the number of modules could be more (or less) than
the number of rules present in the data.

While investigating all the above possibilities is surely ex-
citing, we believe that our work and setting provides the
test-bed to allow for extensions and analysis into all the
laid-out possibilities. This would not only allow for a more
thorough understanding of modular systems but also lead to
investigations into inductive biases that benefit such systems
on various real-world settings.

F. Proof of Model Relations

To prove: Given enough representational capacity, we need
to show that GT-Modular C Modular-op C Modular C
Monolithic.

We prove this step-by-step by using the functional forms of
different models as described in Table 1.

Claim: GT-Modular C Modular-op

Proof. Given the formulation of a GT-Modular system as

Ym =

T

(x,c¢) (20)

I
[M]=

y Cm Ym 2n

3
ﬂ.

and of the Modular-op system as

ym = .f'y/n (X7 C) (22)
p =g(c) (23)
R
Y= PmIm (24)
m=1

We see that we obtain GT-Modular from Modular-op simply
by setting g(-) as the identity function and f,,, = f/,

Is a Modular Architecture Enough?

Claim: Modular-op C Modular

Proof. The formulation of a Modular-op system is given as

ym = fm(xvc) (25)
p=g(c) (26)
Y=Y PmIm 27)

m=1

and that of the Modular system as

}A’m,pm = f%(X,C) (28)
R
y= Pm Ym (29)
m=1

We can describe f! (x,c) = ('y (%,€), fl, (%, c)) for

the Modular system. Setting f; (x,c) = fn(x,c) and
frm, (X, ¢) = g(c) for all x, ¢, we recover Modular-op from
the Modular system.

Claim: Modular C Monolithic

Proof. Let the formulation of a Modular system be

ym,pm = fm(xv C) (30)
R
Y= PmIm 31)
m=1

where f,,(x,c) = (fml(x,c), Jrna (X, c)) The formula-
tion of the the Monolithic system is

y=f(xc) (32)
We can recover the Modular system from Monolithic simply

by setting £(%,€) = 3° fona(%,€) - fons (x,).
m=1

Given enough capacity of all the systems, all the functional
assignment are possible. This completes the proof, and
shows that each choice provides an additional inductive bias
by potentially restricting the functional class.

G. MLP

We provide detailed results of our MLP based experiments
highlighting the effects of the training setting (Regression
or Classification), the number of rules (ranging from 2 to
32) and the different model capacities. In these set of ex-
periments, we use the MLP version of the data generating
process (as highlighted in Appendix A) and consider the
models (highlighted in Section B) with f and f,,, modeled
using MLP architectures.

Task and Model Setups. We follow the task setup as de-
scribed in Appendix A. We consider 1-dimensional data

samples for x; and x2 and for the task parameters, we sam-
iid .

ple v, B ~ N(0,1). Further, for the OoD generalization

setup, we instead sample input from a different distribution,

ie., x1,%2 RS N(0,21).

For the models, we consider a shared non-linear digit en-
coder that separately encodes x; and x» and an operational
encoder that encodes c. The encoded inputs are then fed
together to either a monolithic MLP system or to each MLP
module of the modular system. We control for the number
of parameters such that all the systems roughly share the
same number of parameters. Having obtained an output
from the system, we then use a shared decoder to make the
prediction.

We train all the models for 100,000 iterations with a batch-
size of 256 and the Adam optimizer with learning rate of
0.0001. For the classification tasks, we consider binary
cross entropy loss, while for regression we consider the /4
loss.

Classification. We first look at the results on the binary
classification based MLP tasks. For reporting performance
metrics, we consider all model capacities as well as number
of rules while for collapse and specialization metrics, we
consider the smallest, mid-size and largest models and report
over the different number of rules.

Performance. For ease of readability, we first provide a
snapshot of the results through rankings in Figure 8. The
rankings are based on the votes obtained by the different
models. Given a task, averaged over the five training seeds,
a vote is given to the model that performs the best. This
provides a quick view of the number of times each model
outperformed the rest.

Next, we refer the readers to Figure 9 for the in-distribution
and Figure 10 for the out-of-distribution performance of the
various models across both different model capacities as
well as different number of rules.

Collapse-Avg. For each rule setting, we report the Collapse-
Avg metric score of the different models and the three differ-
ent model capacities in Figure 11.

Collapse-Worst. For each rule setting, we report the
Collapse-Worst metric score of the different models and
the three different model capacities in Figure 12.

Inverse Mutual Information. For each rule setting, we report
the Inverse Mutual Information metric score of the different
models and the three different model capacities in Figure
13.

Adaptation. For each rule setting, we report the Adaptation
metric score of the different models and the three different
model capacities in Figure 14.

Is a Modular Architecture Enough?

\Modular-op
17.6%

Monolithic

Monolithic

\Modular-op
18.4%

Modular
36%‘

76.0%

GT-Modular
GT-Modular Modular Modular
(a) In-Distribution (b) Out-of-Distribution

(¢) In-Distribution (d) Out-of-Distribution

Figure 8. Ranking Metric for MLP-Classification. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and

out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c¢) and out-of-distribution ranking in (d).

015 Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
: . P —— ~/.,——. .
/ 0.20 / == 0.250 — / '//
. / S / 4 035 /é - \
' 0.25 e
= . 0200 " — 5
g :/ e :\ \‘\ \ '/
P S
011 \ AN \ N N e m— 025
- — AN —" 0,150 . - ==
B N\ /24 /./ ors R e
___— o012 / / — =
009 — s 0100 — —— 015 =
10° 108 107 10° 106 107 10° 100 107 10° 108 107 10° 106 107
Number of Parameters
—— GT-Modular —— Modular-op —— Modular —— Monolithic

Figure 9. In-Distribution Performance of MLP-Classification Models. Performance (lower is better) of different models of varying
capacities trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
. 0.50 — 0.50 - 055 —
0.5 —
SN E— 0.40 0.40 - = 0.45 s
0s . B O e = =
— : \0 . - :
s . 030 S~ om 035
& 03 = '
03 \./’\.
e 020 | 0.20 B S| 0,25 e e
—l _— S e . — —
S R —1 /~/'/ —" — / —
01 I——e———————,] 0= * 010 — 010 —1 015 .
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 100 107
Number of Parameters
—— GT-Modular —— Modular-op —— Modular —— Monolithic

Figure 10. Out-of-Distribution Performance of MLP-Classification Models. Performance (lower is better) of different models of
varying capacities trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with
five seeds, totaling 25 runs.

Alignment. For each rule setting, we report the Alignment
metric score of the different models and the three different
model capacities in Figure 15.

Regression. Next, we look at the results on the regression
based MLP tasks. For reporting performance metrics, we
consider all model capacities as well as number of rules
while for collapse and specialization metrics, we consider
the smallest, mid-size and largest models and report over
the different number of rules.

Performance. For ease of readability, we first provide a
snapshot of the results through rankings in Figure 16. The

rankings are based on the votes obtained by the different
models. Given a task, averaged over the five training seeds,
a vote is given to the model that performs the best. This
provides a quick view of the number of times each model
outperformed the rest.

Next, we refer the readers to Figure 17 for the in-distribution
and Figure 18 for the out-of-distribution performance of the
various models across both different model capacities as
well as different number of rules.

Collapse-Avg. For each rule setting, we report the Collapse-
Avg metric score of the different models and the three differ-

Is a Modular Architecture Enough?

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules =32

00
<
[
w
Q.
©
_o ' ' II " " II II I II II II I II II
) I

whal . i

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large

Capacity

mmm GT-Modular s Modular-op mmm Modular s Random

Figure 11. Collapse-Avg Metric for MLP-Classification Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over
five tasks, each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules = 16 Rules =32
o
2
o
2
1]
w
aQ
]
©
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular W= Modular-op Bm Modular ~ W= Random

Figure 12. Collapse-Worst Metric for MLP-Classification Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over
five tasks, each with five seeds, totaling 25 runs.

c Rules = 2 Rules =4 Rules =8 Rules =16 Rules = 32

o

2

©

€

=

L

£

©

=]

=1

S

=

9]

: | i

9]

z il

- Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

s GT-Modular - Modular-op B Modular Bmm Random

Figure 13. Inverse Mutual Information Metric for MLP-Classification Models. Highlights how poor the specialization (lower is
better) is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an
average over five tasks, each with five seeds, totaling 25 runs.

ent model capacities in Figure 19. metric score of the different models and the three different

Collapse-Worst. For each rule setting, we report the model capacities in Figure 22.

Collapse-Worst metric score of the different models and Alignment. For each rule setting, we report the Alignment
the three different model capacities in Figure 20. metric score of the different models and the three different

. . model capacities in Figure 23.
Inverse Mutual Information. For each rule setting, we report P &

the Inverse Mutual Information metric score of the different
models and the three different model capacities in Figure H. MHA

21. We provide detailed results of our MHA based experiments

Adaptation. For each rule setting, we report the Adaptation highlighting the effects of the training setting (Regression

Is a Modular Architecture Enough?

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules =32
C
k=]
S
3
aQ
©
kel
__uhl | I i _| _' _' = = _I . . —I ™ ™ -I
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular s Modular-op s Modular mmm Random

Figure 14. Adaptation Metric for MLP-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32
e
o
O
n
c
]
e
T
)
C
=
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

s GT-Modular - Modular-op W Modular Bmm Random

Figure 15. Alignment Metric for MLP-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.
Monolithic
Modular-op
28.8%
0.8%
Modular
Modular

N Modul
(a) In-Distribution (b) Out-of-Distribution . o
(¢) In-Distribution (d) Out-of-Distribution

Monolithic

Modular-op
2.4%
24.0%

64.8% 8.8%

Modular
GT-Modular GT-Modular

Figure 16. Ranking Metric for MLP-Regression. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and
out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c¢) and out-of-distribution ranking in (d).

or Classification), the number of rules (ranging from 2 to notions of search d(-, -), outlined as
32) and the different model capacities. In these set of ex-
periments, we use the MHA version of the data generating
process (as highlighted in Appendix A) and consider the
models (highlighted in Section B) with f and f,,, modeled

* Search-Version 1: Here qy,, and q/,,. are 1-dimensional
per token per rule. The search rule is defined as

using MHA architectures. d(a,b) = |a — b

Tas-k aqd Model Setups. We fol.low the task setup as de- « Search-Version 2: Here g, and q,,. are 2-dimensional

scribed in Appendix A. We consider the sequence length per token per rule and are instead sampled indepen-
- .)

as 10 for training and the input vy, and vy, to be 1- dently from a 2-dimensional hyper-sphere. The search

dimensional per token per rule. We consider two different rule is defined as d(a, b) = a”'b.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
3 0.0055
R
0.0055 0.0050 \ / 0007 0.009
- - o T~
0.0045 " \ \ ; b
1n 0.0045 ¢ 4 — /‘ 0.0040 / \ / . \ = 0007 2
S P ° A 0.005 < \ .
3 [& o . /
. 0.0035 . . _— — T =
00035 T~ £ ’ i - ’ 0.005 —
. . y, 0.0030 / : — _
— v / . //,»7(1%.\.
= — < 0.003 - =y
¢ 0.0025 / :
00025 — '/ 00020 — 0003 *
10° 100 107 10° 100 107 10° 100 107 10° 10° 107 10° 10° 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 17. In-Distribution Performance of MLP-Regression Models. Performance (lower is better) of different models of varying
capacities trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

0.05

Loss

Q b 0.06 . 005 \ 0.05 | : 0.06 \

0.03 ————
003 T ~_ 003 o
~ .

\ 0.02 \\7 = v o, \777’/777‘ 0.02 \\\;\77 L

001 e e e S B 001 e g oot _/ R — . mEes
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 18. Out-of-Distribution Performance of MLP-Regression Models. Performance (lower is better) of different models of varying
capacities trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32
B
3 |
]
g |
ks | |
g ! | . |
| i il |
ok i i
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity
B GT-Modular Modular-op mmm Modular B Random

Figure 19. Collapse-Avg Metric for MLP-Regression Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

For the task parameters, we sample v, S, A (0,1). Fur- number of parameters and the number of heads such that all

ther, for the OoD generalization setup, we instead sample ~ the systems roughly share the same number of parameters.
input from a different distribution, i.e., we use N'(0,21) in- For modular systems, we consider the number of heads per
stead of standard normal and in case of sampling from hyper- ~ module to be 2 which is the number required to solving the
sphere, we instead consider one with double the radius. We task. On the contrary, we give similar capacity to monolithic

also test with different sequence lengths, specifically 3,5, systems by having the number of heads as 2 x (Number
10, 20 and 30. of Rules). Having obtained an output from the system, we

) . then use a shared decoder to make the prediction.
For the models, we consider a shared non-linear encoder that

encodes each (x,,, ¢,) independently. The encoded inputs ~ We train all the models for 500,000 iterations with a batch-
are then fed to either a monolithic MHA system or to each size of 256 and the Adam optimizer with learning rate of
MHA module of the modular system. We control for the ~ 0.0001. For the classification tasks, we consider binary

Is a Modular Architecture Enough?

Rules =2 Rules = 4 Rules = 8 Rules =16 Rules =32
=
2
<}
=
[
w
Q.
]
: II i' II
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular s Modular-op mmm Modular s Random

Figure 20. Collapse-Worst Metric for MLP-Regression Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

c Rules = 2 Rules =4 Rules =8 Rules =16 Rules = 32

o

2

©

£

=

]

£

©

3

F=1

S

]

: i

]

E **

- Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular W= Modular-op Bm Modular ~ W= Random

Figure 21. Inverse Mutual Information Metric for MLP-Regression Models. Highlights how poor the specialization (lower is better)
is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average
over five tasks, each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules = 16 Rules =32
c
o
S
il
aQ
©
kel
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

Bms GT-Modular ~ mmm Modular-op Bsm Modular ~ W= Random

Figure 22. Adaptation Metric for MLP-Regression Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

cross entropy loss, while for regression we consider the ;
loss.

Performance. For ease of readability, we first provide a
snapshot of the results through rankings in Figure 24. The
rankings are based on the votes obtained by the different
models. Given a task, averaged over the five training seeds,
a vote is given to the model that performs the best. This
provides a quick view of the number of times each model
outperformed the rest.

Classification. We first look at the results on the binary
classification based MHA tasks. For reporting performance
metrics, we consider all model capacities, all number of
rules as well as the two search versions while for collapse
and specialization metrics, we consider the smallest, mid-

size and largest models and report over the different number
of rules as well the search versions.

We refer the readers to Figure 25 for the in-distribution
performance and Figure 26 for the most extreme out-of-
distribution performance (where we use the largest sequence

Is a Modular Architecture Enough?

Rules =2 Rules =4

Hungarian Score

Small Medium Large Small Medium Large Small

Rules =8

Rules =16 Rules =32

44 104 ||| ||| ||| ‘ll ||| ||| ‘“ ‘“ ||‘

Medium

Large Small Medium Large Small Medium Large

Capacity

B GT-Modular

B Modular-op

s Modular mmm Random

Figure 23. Alignment Metric for MLP-Regression Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Monolithic

Monolithic

GT-Modular Modular

Modular GT-Modular

(a) In-Distribution (b) Out-of-Distribution

Modular-op

~ Monolithic
Monolithic

Modular
Modular

(¢) In-Distribution (d) Out-of-Distribution

Figure 24. Ranking Metric for MHA-Classification. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and
out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For OoD, we only consider the extreme setting with
largest sequence length and change in distribution of individual tokens.

length (30) and also change the distribution from which
individual tokens are sampled) of the various models across
both different model capacities, search functions as well
as different number of rules. We also refer the reader to
Figures 56 - 59 for the out-of-distribution case where only
the sequence length is varied in the data and to Figures 60 -
64 where both the sequence length is potentially altered and
also the distribution from which individual data points are
sampled.

Collapse-Avg. For each rule setting and search version, we
report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 27.

Collapse-Worst. For each rule setting and search version,
we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure
28.

Inverse Mutual Information. For each rule setting and search
version, we report the Inverse Mutual Information metric
score of the different models and the three different model
capacities in Figure 29.

Adaptation. For each rule setting and search version, we
report the Adaptation metric score of the different models

and the three different model capacities in Figure 30.

Alignment. For each rule setting and search version, we
report the Alignment metric score of the different models
and the three different model capacities in Figure 31.

Regression. Next, we look at the results on the regression
based MHA tasks. For reporting performance metrics, we
consider all model capacities, all number of rules as well as
the two search versions while for collapse and specializa-
tion metrics, we consider the smallest, mid-size and largest
models and report over the different number of rules as well
the search versions.

Performance. For ease of readability, we first provide a
snapshot of the results through rankings in Figure 32. The
rankings are based on the votes obtained by the different
models. Given a task, averaged over the five training seeds,
a vote is given to the model that performs the best. This
provides a quick view of the number of times each model
outperformed the rest.

We refer the readers to Figure 33 for the in-distribution
performance and Figure 34 for the most extreme out-of-
distribution performance (where we use the largest sequence
length (30) and also change the distribution from which

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2

Search-Version: 1 | Rules: 4

Search-Version: 1 | Rules: 8

Search-Version: 1 | Rules: 16

Search-Version: 1 | Rules: 32

>
NN

Error

25 \

Search-Version: 2 | Rules: 32
45 e,

Error

10° 100 10° 100 10° 10°
Number of Parameters

—— GT-Modular Modular-op ~ —— Modular ~ —— Monolithic

Figure 25. In-Distribution Performance of MHA -Classification Models. Performance (lower is better) of different models of varying
capacities, different search versions in data and trained across different number of rules. Each point on the graph is obtained from an
average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8

Search-Version: 1 | Rules: 16

Search-Version: 1 | Rules: 32

47 '.N\‘

350
\\\
R =
S 30.0
£ .
e s . ~X—
\\
25.0 \
M
200 39 .
Search-Version: 2 | Rules: 32
35.0
325
30.0
275
.
2250
=
s
225
20.0

15.0
10° 100 10° 100 10° 100 10°

Number of Parameters
—— GT-Modular —— Modular

Modular-op —— Monolithic

Figure 26. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32
g
[
v
Q.
o
©

[T [I I

Rules = 2 Rules =4 Rules = 8 Rules =16 Rules = 32
g
[
v
Q
8
_c i

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity
EEm GT-Modular W Modular-op Bmm Modular W Random

Figure 27. Collapse-Avg Metric for MHA-Classification Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over

five tasks, each with five seeds, totaling 25 runs.

Rules =2 Rules =4

Collapse-Worst

Rules =2 Rules =4

Collapse-Worst

Rules =8

Rules =16 Rules = 32

Rules =8

Rules =16 Rules = 32

I | o iI a' [II I‘ Ii || II Il II Il Il

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity
s GT-Modular s Modular-op s Modular s Random

Figure 28. Collapse-Worst Metric for MHA -Classification Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over

five tasks, each with five seeds, totaling 25 runs.

individual tokens are sampled) of the various models across
both different model capacities, search functions as well
as different number of rules. We also refer the reader to
Figures 65 - 68 for the out-of-distribution case where only
the sequence length is varied in the data and to Figures 69 -
73 where both the sequence length is potentially altered and
also the distribution from which individual data points are
sampled.

Collapse-Avg. For each rule setting and search version, we
report the Collapse-Avg metric score of the different models
and the three different model capacities in Figure 35.

Collapse-Worst. For each rule setting and search version,
we report the Collapse-Worst metric score of the different
models and the three different model capacities in Figure
36.

Is a Modular Architecture Enough?

- Rules =2 Rules = 4 Rules =8 Rules =16 Rules =32
8

=]

©

E

L

=

©

S

F=1

=}

=

[

9]

E | Bl B i i
c Rules =2 Rules = 4 Rules = 8 Rules = 16 Rules =32
2

S

<

IS

=

L

£

©

2

=

=

v

]

: | T o, il 8

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

s GT-Modular

s Modular-op

B Modular Emm Random

Figure 29. Inverse Mutual Information Metric for MHA -Classification Models. Highlights how poor the specialization (lower is
better) is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an

average over five tasks, each with five seeds, totaling 25 runs.

Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32

C

o

5

Q.

©

©

< II I ' 'I I i'l I I i I I I II
A 4 0 M ol o B i e B e il

Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32

=

o

8

Q.

©

©

< I I II I I I I I I I I I I
L G T ol ol Bl s
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large

Capacity
s GT-Modular s Modular-op s Modular s Random

Figure 30. Adaptation Metric for MHA-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Inverse Mutual Information. For each rule setting and search
version, we report the Inverse Mutual Information metric
score of the different models and the three different model
capacities in Figure 37.

Adaptation. For each rule setting and search version, we
report the Adaptation metric score of the different models
and the three different model capacities in Figure 38.

Alignment. For each rule setting and search version, we
report the Alignment metric score of the different models
and the three different model capacities in Figure 39.

I. RNN

We provide detailed results of our RNN based experiments
highlighting the effects of the training setting (Regression

Is a Modular Architecture Enough?

Rules =2 Rules = 4 Rules =8 Rules =16 Rules = 32
€
[}
£
c
20
J.iji.'.'i. III
Rules = 2 Rules =4 Rules = 8 Rules =16 Rules = 32
<
[}
£
C
20
'i...a.iﬁ..i'il.i III
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

B GT-Modular

- Modular-op

B Modular B Random

Figure 31. Alignment Metric for MHA-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Monolithic
GT-Modular
GT-Modular 22.8%
42.8%

24.0%
10.4%

Monolithic

17.6%
34.4%

5.6% 42.4%
Modular-op
Modular

Modular

(2) In-Distribution (b) Out-of-Distribution

Modular-op

.. Modular
Modular Monolithic N
Monolithic

(¢) In-Distribution (d) Out-of-Distribution

Figure 32. Ranking Metric for MHA-Regression. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and
out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For OoD, we only consider the extreme setting with
largest sequence length and change in distribution of individual tokens.

or Classification), the number of rules (ranging from 2 to
32) and the different model capacities. In these set of ex-
periments, we use the RNN version of the data generating
process (as highlighted in Appendix A) and consider the
models (highlighted in Section B) with f and f,,, modeled
using simple RNN architectures.

Task and Model Setups. We follow the task setup as de-
scribed in Appendix A. We consider the sequence length as
10 for training and the input x,, to be 32-dimensional.

For the task parameters, we sample A., B, N (0, \/%I)
and w ~ AN (0,1). Further, for the OoD generalization setup,
we instead sample input from a different distribution, i.e.,
we use N (0, 21) instead of standard normal. We also test
with different sequence lengths, specifically 3, 5, 10, 20 and
30.

For the models, we consider a shared non-linear encoder
that encodes each (x,,, c,,) independently. The encoded
inputs are then fed to either a monolithic RNN system or to
each RNN module of the modular system. We control for
the number of parameters such that all the systems roughly
share the same number of parameters. Having obtained an
updated state from the system, we then use a shared decoder
to make the prediction.

We train all the models for 500,000 iterations with a batch-
size of 256 and the Adam optimizer with learning rate of
0.0001, with gradient clipping at 1.0. For the classifica-
tion tasks, we consider binary cross entropy loss, while for
regression we consider the /; loss.

Classification. We first look at the results on the binary
classification based RNN tasks. For reporting performance
metrics, we consider all model capacities and all number

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
0.8 \
0.6 \\\\\
a
<] 0.6
2
04
0.4
0.2
1.0
0.40 0.9
0.35 0.8
030 07
«
8 0.25 06
3
0.5
0.20
0.4
0.15
03
0.10

0.2

10° 100 105 100 10° 10°
Number of Parameters

—— GT-Modular Modular-op Modular —— Monolithic

Figure 33. In-Distribution Performance of MHA-Regression Models. Performance (lower is better) of different models of varying
capacities, different search versions in data and trained across different number of rules. Each point on the graph is obtained from an
average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 218 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
24 5 4
420
(=}
- .
N\
16
Search-Version: 2 | Rules: 2 Search-Version: 2 | Rules: 16
24 .

/ Y,
- <.7\ -

. 1.90 k

10° 10° 10° 10° 10° 10°
Number of Parameters

N

—— GT-Modular —— Modular-op —— Modular ~ —— Monolithic

Figure 34. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules =2 Rules = 4 Rules =8 Rules =16 Rules = 32
%o i
@
w
a
K]
B i I
Rules =2 Rules = 4 Rules =8 Rules = 16 Rules = 32
g
]
w
Q
K]
©
A iJ. i " i I i I
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

EEm GT-Modular W Modular-op Bmm Modular W Random

Figure 35. Collapse-Avg Metric for MHA-Regression Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32
o
&
<]
=
[}
w
aQ
]
©

Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32
o
2
o
=
]
w
aQ
oy
©

T a b B BRI ERD AN

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

s GT-Modular s Modular-op s Modular s Random

Figure 36. Collapse-Worst Metric for MHA-Regression Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over

five tasks, each with five seeds, totaling 25 runs.

of rules while for collapse and specialization metrics, we a vote is given to the model that performs the best. This
consider the smallest, mid-size and largest models and report ~ provides a quick view of the number of times each model
over the different number of rules. outperformed the rest.

Performance. For ease of readability, we first provide a ~ We refer the readers to Figure 41 for the in-distribution
snapshot of the results through rankings in Figure 40. The = performance and Figure 42 for the most extreme out-of-
rankings are based on the votes obtained by the different distribution performance (where we use the largest sequence
models. Given a task, averaged over the five training seeds, length (30) and also change the distribution from which in-

Is a Modular Architecture Enough?

- Rules =2 Rules = 4 Rules =8 Rules =16 Rules =32
k=i
=]
©
E
L
=
©
S
F=1
=}
[
4
$
c Rules =2 Rules = 4 Rules = 8 Rules = 16 Rules =32
]
=]
<
IS
=
L
£
©
2
=
=
v
: il i b I
]
>
E ol R
Sma Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

s GT-Modular

s Modular-op

B Modular Emm Random

Figure 37. Inverse Mutual Information Metric for MHA-Regression Models. Highlights how poor the specialization (lower is better)
is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average

over five tasks, each with five seeds, totaling 25 runs.

Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32
C
o
=1
8
Q.
©
©
< I I ' I I I II II I 'I ' I I
Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32

=
o
S
il
Q.
©
©
< I I I I .I I III II II I I

JI _n.l _LI _iI il e _II ol il _II | o NN

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large

Capacity
s GT-Modular s Modular-op s Modular s Random

Figure 38. Adaptation Metric for MHA-Regression Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

dividual tokens are sampled) of the various models across
both different model capacities as well as different number
of rules. We also refer the reader to Figures 74 - 77 for the
out-of-distribution case where only the sequence length is
varied in the data and to Figures 78 - 82 where both the se-
quence length is potentially altered and also the distribution
from which individual data points are sampled.

Collapse-Avg. For each rule setting, we report the Collapse-
Avg metric score of the different models and the three differ-
ent model capacities in Figure 43.

Collapse-Worst. For each rule setting, we report the
Collapse-Worst metric score of the different models and
the three different model capacities in Figure 44.

Inverse Mutual Information. For each rule setting, we report

Is a Modular Architecture Enough?

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32
€
[
€
=
oo
2 I I I I I II I I I
. i T ii i i' I II
Rules = 2 Rules =4 Rules =8 Rules =16 Rules = 32
€
[
€
C
.50
Z I I I I II I I II I
' renm N 'i I i

Medium Large Small Medium Large Small

B GT-Modular

Medium Large Small
Capacity

- Modular-op

Medium Large Small Medium Large

B Modular B Random

Figure 39. Alignment Metric for MHA-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

GT-Modular

(a) In-Distribution (b) Out-of-Distribution

Modular-op
Modular-op
32.0% 39.20 Monolithic Monolithic
64.8% 3.0 60.8% Modular Modular
GT-Modular
Modular

(¢) In-Distribution (d) Out-of-Distribution

Figure 40. Ranking Metric for RNN-Classification. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and
out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For OoD, we only consider the extreme setting with
largest sequence length and change in distribution of individual tokens.

the Inverse Mutual Information metric score of the different
models and the three different model capacities in Figure
45.

Adaptation. For each rule setting, we report the Adaptation
metric score of the different models and the three different
model capacities in Figure 46.

Alignment. For each rule setting, we report the Alignment
metric score of the different models and the three different
model capacities in Figure 47.

Regression. Next, we look at the results on the regression
based RNN tasks. For reporting performance metrics, we
consider all model capacities and all number of rules while
for collapse and specialization metrics, we consider the
smallest, mid-size and largest models and report over the
different number of rules.

Performance. For ease of readability, we first provide a
snapshot of the results through rankings in Figure 48. The
rankings are based on the votes obtained by the different
models. Given a task, averaged over the five training seeds,
a vote is given to the model that performs the best. This
provides a quick view of the number of times each model
outperformed the rest.

We refer the readers to Figure 49 for the in-distribution
performance and Figure 50 for the most extreme out-of-
distribution performance (where we use the largest sequence
length (30) and also change the distribution from which
individual tokens are sampled) of the various models across
both different model capacities, search functions as well
as different number of rules. We also refer the reader to
Figures 83 - 86 for the out-of-distribution case where only
the sequence length is varied in the data and to Figures 87 -
91 where both the sequence length is potentially altered and

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

20 .

5 5 125 A
2 \
i 15

12

3 75 \
— O\ \ o
e e—— — ., 25 &F‘,,,J o ——— s
08 —— e o = USSS— = 3 —
10° 100 107 10° 100 107 10° 100 107 10° 100 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 41. In-Distribution Performance of RNN-Classification Models. Performance (lower is better) of different models of varying
capacities and trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with five

seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

7 /' 15 % N, \ \
15 \

—.. . o- \ . . \ .

= N ~— —— . \
5 oS~ 5 \'\\—.’—f s 5 o -5 .\:\s

5
107 10° 10° 107 10° 108 107 10° 10° 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 42. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules =2 Rules = 4 Rules = 8 Rules =16 Rules =32
00
<
]
w
Q
©
S
1
“ h | - ! ' ! :
Small Medium Large Small Médium Lérge Small Medium Large Small Medium Large Small Medium Large
Capacity
mmm GT-Modular Modular-op Bm Modular ~ W Random

Figure 43. Collapse-Avg Metric for RNN-Classification Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

also the distribution from which individual data points are models and the three different model capacities in Figure
sampled. 53.

Collapse-Avg. For each rule setting, we report the Collapse- Adaptation. For each rule setting, we report the Adaptation
Avg metric score of the different models and the three differ- metric score of the different models and the three different
ent model capacities in Figure 51. model capacities in Figure 54.

Collapse-Worst. For each rule setting, we report the Alignment. For each rule setting, we report the Alignment
Collapse-Worst metric score of the different models and metric score of the different models and the three different
the three different model capacities in Figure 52. model capacities in Figure 55.

Inverse Mutual Information. For each rule setting, we report
the Inverse Mutual Information metric score of the different

Is a Modular Architecture Enough?

Rules =2 Rules = 4 Rules =8 Rules =16 Rules =32

o

4

<}

;I I

]

w

Q

]

©

1T 14 11 A 3 0dd0nn
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large

Capacity

mmm GT-Modular ~ W= Modular-op mmm Modular ~ W Random

Figure 44. Collapse-Worst Metric for RNN-Classification Models. Highlights the amount of collapse (lower is better) suffered by
different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over

five tasks, each with five seeds, totaling 25 runs.

c Rules = 2 Rules =4 Rules =8 Rules =16 Rules = 32

o

S

©

IS

=

L

kS

©

S

=1

=]

=

(]

: I i i

9]

- Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular ~ W= Modular-op Bmm Modular ~ = Random

Figure 45. Inverse Mutual Information Metric for RNN-Classification Models. Highlights how poor the specialization (lower is
better) is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an
average over five tasks, each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules =8 Rules =16 Rules = 32
=
Q
=1
©
3
Q
©
o
- i - all ' | o I' M ol I. _I _hEE _w
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular s Modular-op s Modular s Random

Figure 46. Adaptation Metric for RNN-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules =32
o
c
9]
€
c
20
A i ol n i M . l i .M) Ml 0
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular W= Modular-op mmm Modular ~ W= Random

Figure 47. Alignment Metric for RNN-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

Modular

ithi Modular
Monolithic
. Modular-op \Monolithic
4'010@.4% 17.6%
60.8% 20.0% 3
GT-Modular 1.6% Modular-op
Modular
GT-Modular
Monolithic

(a) In-Distributi (b) Out-of-Distribution
a) In-Distribution

Monolithic

(c) In-Distribution (d) Out-of-Distribution

Figure 48. Ranking Metric for RNN-Regression. Each pie chart shows the number of times a model wins the competition (higher is
better), which means outperforms the other models on a single task. Ranking is based on all models with in-distribution ranking in (a) and
out-of-distribution ranking in (b). On the contrary, rankings are based only on completely end-to-end trained Modular and Monolithic
systems with in-distribution ranking in (c) and out-of-distribution ranking in (d). For OoD, we only consider the extreme setting with
largest sequence length and change in distribution of individual tokens.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

04 16 m
014 o 12 1.50

Loss
o
©

o

%

= . .
002 \‘:. e — :\§-§ﬁé§. R = \'\.;.
T 00 0.0 0.0 e 000
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular ~ —— Modular-op —— Modular ~ —— Monolithic

Figure 49. In-Distribution Performance of RNN-Regression Models. Performance (lower is better) of different models of varying
capacities and trained across different number of rules. Each point on the graph is obtained from an average over five tasks, each with five
seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 8 Rules: 16 Rules: 32

AN
>N\

Rules: 2 Rules: 4

N

20

@ \
212 .
S

08 \

| g

/
)
L)

—
04 5 \ 1 =
g 05
10° 100 107 1 100 107 10° 10° 107 10° 10° 10°
Number of Parameters
—— GT-Modular ~ —— Modular-op ~ —— Modular ~ —— Monolithic

Figure 50. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32
¥
<
1]
w
aQ
]
_O I ' ' I
V]
| BN «+« N «a A . WA i ul .
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

B GT-Modular s Modular-op W Modular mmm Random

Figure 51. Collapse-Avg Metric for RNN-Regression Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Rules = 2 Rules = 4 Rules = 8 Rules =16 Rules = 32

o

2

<]

gl I

1]

w

aQ

]

: I i

’ i i

Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

B GT-Modular e Modular-op B Modular B Random

Figure 52. Collapse-Worst Metric for RNN-Regression Models. Highlights the amount of collapse (lower is better) suffered by different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,

each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

c Rules =2 Rules =4 Rules =8 Rules =16 Rules = 32

]

S

©

IS

=

L

kS

©

S

=1

=]

=

(]

Q I

9]

- Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular ~ W= Modular-op mmm Modular ~ W Random

Figure 53. Inverse Mutual Information Metric for RNN-Regression Models. Highlights how poor the specialization (lower is better)
is of different models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average
over five tasks, each with five seeds, totaling 25 runs.

Rules =2 Rules = 4 Rules =8 Rules =16 Rules = 32
c
o
=1
3
Q
©
o
II II II . ol o o . el o . . wal L .' . | .
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular ~ W= Modular-op Bmm Modular ~ = Random

Figure 54. Adaptation Metric for RNN-Regression Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

Rules = 2 Rules =4 Rules =8 Rules =16 Rules = 32
o
c
L]
€
c
20
o - ' s o o N s . M ol .| I o i
Small Medium Large Small Medium Large Small Medium Large Small Medium Large Small Medium Large
Capacity

mmm GT-Modular s Modular-op s Modular s Random

Figure 55. Alignment Metric for RNN-Classification Models. Highlights how poor the specialization (lower is better) is of different
models of varying capacities trained across different number of rules. Each bar on the graph is obtained from an average over five tasks,
each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

25
30

.
o
=
[15 2
5 \
5 T 10
Search-Version: 2 | Rules: 8
- 35
9 A
25 \
8 \ 30
7 20 \
25
56
< 15 =
ws 20
4 10 \
N 15
5 o

10° 106
Number of Parameters

—— GT-Modular ~ —— Modular-op —— Modular —— Monolithic

Figure 56. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same) Performance on MHA -Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

35

25

Error

Search-Version: 2 | Rules: 4 Search-Version: 2 | Rules: 8

25 %

30 35

20
25 30

20 25

Error

20

10° 100 10° 10° 10° 10° 10° 10°
Number of Parameters

—— GT-Modular —— Modular-op —— Modular —— Monolithic

Figure 57. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
40

30

Search-Version: 2 | Rules: 2

10° 10° 10° 10° 10° 10° 10° 10° 10° 10°
Number of Parameters

—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 58. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same) Performance on MHA -Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

35 40.0

\ . 350
= 275
o . .
£25 \3
=5) //.
g 30.0
225 .//
15 \/ 25.0
17.5 v
Search-Version: 2 | Rules: 2 Search-Version: 2 | Rules: 4
" 35 .
16
40
30
14
35
- 25
12
2 30
fim
20
10 2
8 15 20
10° 108 10°
Number of Parameters
—— GT-Modular ~ —— Modular-op —— Modular —— Monolithic

Figure 59. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
A 300 ° N
22 35 40 = Pe—
\ N————
25.0 " ‘
18 .
NN 30
\ 25
20.0 e .
14 VR
150 \ — 20
10 : \/ 15
Search-Version: 2 | Rules: 8 Search-Version: 2 | Rules: 32
30 c
30 35 40 T S
25
2 20 35
20 -
20 25
15 25
15 0
10 20
15
10
15
10° 10° 10° 10° 10° 10°
Number of Parameters
—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 60. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
6 26
35 40
22 \
- - N
S \
=12 18 \\
[25 30
14 \
8 10 - 15 20 2
Search-Version: 2 | Rules: 2 35 Search-Version: 2 | Rules: 4 Search-Version: 2 | Rules: 8 Search-Version: 2 | Rules: 32
40
18« P
16 : 30 35 40 N S
14 AN \>.‘
25 30 35 N
. 5 .
512 =l . N
= v 20
Yo 25 30
N .~ 15
8 \ » e
6 S 10
\s:: 1 20 :
4
10° 100 10° 100 10° 100 10° 108 10° 108

Number of Parameters

—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 61. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

22

Search-Version: 1 | Rules: 2

10° 100

Search-Version: 1 | Rules: 4

S
—
10° 109

—— GT-Modular

Search-Version: 1 | Rules: 8

10° 108
Number of Parameters

Modular-op —— Modular

Search-Version: 1 | Rules: 16

10° 100

Monolithic

425

37.5

325

45.0
42.5
40.0
375
35.0
325
30.0
275
25.0

Search-Version: 1 | Rules: 32

Search-Version: 2 | Rules: 32

10° 106

Figure 62. Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

325

27.5

Error

225

17.5

Search-Version: 1 | Rules: 2

1/

=

Search-Version: 2 | Rules: 2

o

AN

'~

e
N

10° 100

40

35

30

25

20

Search-Version: 1 | Rules: 4

10° 100

—— GT-Modular

30

25

Search-Version: 1 | Rules: 8

10° 108
Number of Parameters

Modular-op ~ —— Modular

45.0
425
40.0
375
35.0
325
30.0
27.5

25.0

Search-Version: 1 | Rules: 16

Search-Version: 2 | Rules: 16

o——

.

R

10° 108

Monolithic

46
44
42
40
38
36
34
32

Search-Version: 1 | Rules: 32

Search-Version: 2 | Rules: 32

T
.\:\

10° 108

Figure 63. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered) Performance on MHA -Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

25.0

Search-Version: 1 | Rules: 2

10°

38

34

30

26

40

35

30

25

20

Search-Version: 1 | Rules: 4

10°

Search-Version: 1 | Rules: 8

Search-Version: 1 | Rules: 16

N

\.

N3 5

2 \\
38
34

Search-Version: 2 | Rules: 16
46 -

e ..
a4 .\\;_
42 \.\\
40
38
36
34
32
30

100 10° 100 10° 100
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

47

45

43

/1

39

48

46

42

40

38

36

Search-Version: 1 | Rules: 32

Search-Version: 2 | Rules: 32
—— \\:\

\“ \\\-.

10° 106

Figure 64. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on MHA-Classification
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

0.35

0.15

Search-Version: 1 | Rules: 2

Search-Version: 2 | Rules: 2

0.4

0.2

Search-Version: 1 | Rules: 4

10°

Search-Version: 1 | Rules: 8

10° 10° 10°
Number of Parameters

Search-Version: 1 | Rules: 16

10°

—— GT-Modular Modular-op ~ —— Modular ~ —— Monolithic

100

0.9

0.7

0.5

0.9

0.8

0.7

0.6

0.5

Search-Version: 1 | Rules: 32

Search-Version: 2 | Rules: 32

Figure 65. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
045 ; b ~—.
0.8 \)
0.6 NS
035 \ 08
" .
S \
] \
0.25 0.4 0.6 .
\. \ =
\ \ 06
0.15 —
0.2 0.4
Search-Version: 2 | Rules: 16 Search-Version: 2 | Rules: 32
0.4 09
b 09 I
035 08 09 \
030 07 08 \}
0.25 06 07 0.8
a 0.5
S 0.20 ’ N
3 N
04 0.6 0.7 O
0.15
0.3 0.5
0.10 0.6
02 04
0.05
0.1 3
0.5
108 108 10° 100 10° 108
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 66. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
10 0 1.00
0.96 —
08 . =0
o 5 © 092
3 - —
06 Y .
’ » 088
0.4 / b=
0.84
Search-Version: 2 | Rules: 16 Search-Version: 2 | Rules: 32
0.45
0.40
035
]
S o030
0.25 s
g4
0.20 i 7
015 v

10° 100 10° 100 10° 108 105 10° 10° 10°
Number of Parameters

—— GT-Modular Modular-op ~ —— Modular ~ —— Monolithic

Figure 67. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

0.6

0.5

Loss

0.4

0.3

Search-Version: 1 | Rules: 2
y:

0.85

Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
/ o 1.00 .
1.000 N —
0.98 \//
0.950 N
0.96
0.900
0.94
0.850 v /
0.92
Search-Version: 2 | Rules: 16 Search-Version: 2 | Rules: 32
1.00 o
095 4
0.90 N\,
0.85 N\
0.80 h—
0.75
0.70 \
10° 100 10 106
Number of Parameters
—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 68. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

0.6

Search-Version: 1 | Rules: 2

Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
18 T \.‘><
1.4 e
AN
1.2 ~— N
\ \\
1.4 A SS
1.0 N
0.8
1.0
Search-Version: 2 | Rules: 16
1.8 .
20 /\ o
1.6 -
18 \/\
1.4 18
16
12
16
0 1.4 \
08 12 14
06 10 12
0.4 ~—. 08
1.0
10° 100 108 106
Number of Parameters
—— GT-Modular —— Modular-op —— Modular ~ —— Monolithic

Figure 69. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32
0 P
18 N
1.0 =~
\.
1.2
P 16
=}
— 08
1.4
0.8
0.6

Search-Version: 2 | Rules: 4

14 &
A 18 x 18 o
1.2 16 o 16
10 ® 14 \ 1.4 1.8
ﬁ 0.8 \: 12 \ 12
. N 16
e \ 1.0 10
0.6 0.8
. 0.8 14
" 0.6
0.4 \/ 06
e, 04 12
0.2 e 04
10° 106 10° 108 10° 100 10° 100
Number of Parameters
—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 70. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

0.8

10° 10° 108 10° 10° 10° 10° 10° 10° 10°
Number of Parameters

—— GT-Modular —— Modular-op —— Modular ~ —— Monolithic

Figure 71. Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Search-Version: 1 | Rules: 2 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

S

2.0

0
a
=}
=116
12 —
Search-Version: 2 | Rules: 32
2.0 /
18 'f(;&-:'//&‘*—r.
016
a
(=}
3

10° 10° 105 106
Number of Parameters

—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 72. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered) Performance on MHA-Regression
Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Search-Version: 1 | Rules: 2 215 Search-Version: 1 | Rules: 4 Search-Version: 1 | Rules: 8 Search-Version: 1 | Rules: 16 Search-Version: 1 | Rules: 32

24

2.00 '—_'\f/

-3 \
/

Search-Version: 2 | Rules: 16 5 Search-Version: 2 | Rules: 32

22
2.05

! — <7 200 C___(fs/ I

1.90

108 10° 10° 100 108
Number of Parameters

10° 10°
—— GT-Modular —— Modular-op —— Modular ~ —— Monolithic
Figure 73. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on MHA-Regression

Models. Performance (lower is better) of different models of varying capacities, different search versions in data and trained across
different number of rules. Each point on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
)\ \ A 175 RN
7 14 N\
0.65
12,5
N 2.0 5 10
o = N
2
= .
w 0,55 \
=~ 5 6 \ 7.5 .
- 1.0 \ \ h .
10° 100 107 10° 100 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 74. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 , Rules: 32
1.0 20 17.5
10
5 30 125 15 s
08 X "
w 6
X 75 .
8 . 5 S . N
o : .) i . =l | 1. \ N ST
3 o - . L e et} - . ———] —
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 75. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8

Rules: 16 Rules: 32
r 35
325 1 s

Error
~
N
&
o
&
- N
& &
- N
o &

10° 106 107 10° 108 107 10° 100 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 76. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
. I .
4.0 \
10
-
o
=
=
W3p -
/, 6
20 \ —1
2
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 106 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 77. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same) Performance on RNN-Classification

Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
3 1 17.5

K B B B
) \ . :] \

Error

e 25 . — M
0.6 ————: 10 I~ 25 S
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op Modular —— Monolithic

Figure 78. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

' R AN

225

Error
3
]
»
>

—
_ §> . —, > ‘\ ~—_.
0.75 _— o T~ = i
10° 106 107 10° 108 107 10° 106 107 107 10° 100 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 79. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

s 10\ | -
25
. 17.5

O\
TN = ng\%\i\x\%f\ii\

Error
/
o
~
n

\ = — .
15 -2 ~——""——. 25 —— S T8 —
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 80. Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
S - f L 35
o PLS

OO

P

==

T \ \
e = :
- 4 5 = | P—— i— .
3 e B 5 e— — 5 ey
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 81. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

35

- | N =

e —— — — ——
5 T~e——— 5 ToeS—— T,
4 5 5
1 10° 107 10° 100 107 10° 10° 107 10° 100 107 10° 10° 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 82. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on RNN-Classification
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
f 0.8 A
0.6 08 3
0.08 0.20 I
0w 04 .
8 - %,
o} 0.4 \ 0.4 \
0.10 . N
0.04 02 \\
- N .. h \\ .
— — e o T —1
0.00 a e 0.00 =— 00 * — - * 00 e ' 00 —]——
10° 100 107 10° 100 107 10° 100 107 10° 100 107 10° 100 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 83. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Same) Performance on RNN-Regression Models.
Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point on the
graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
0s0 L kL 12 -

b 08 4 T
0.10 A \
08 . .
0.20 8 -
" 3
4 b
S 006 04 \ \

00 T

o

: 00
10° 100 107 10° 100 107 10° 100 107

10°
Number of Parameters
—— GT-Modular Modular-op Modular —— Monolithic

Figure 84. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Same) Performance on RNN-Regression Models.
Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point on the
graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
L 200 -
0.6 D
20 ~.
1.50
0.15 04 * -
2
3 1.00
3 1.0
0.2 050 \ X
e . .
005 IR ; — .\
\;§ \><‘¥\ S T
= c == — — . .
oo 0.00 0.0
10° 108 107 10° 108 107 10° 108 107 o’ 10° 106 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 85. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Same) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
25 25 N T~
0.7 A \

0.25
8 ,// 05 15 15
— 015 .

. 03 \
. \ 05 . 0s
0.05 f=—— 01 ey =

10° 10° 100 107 10 100 107

Number of Parameters
Modular-op —— Modular

10°
—— GT-Modular —— Monolithic

Figure 86. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Same) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
0.25 - 2.00 \
12 150 \ 2 h
1.50
0.4 . =
0 0.15 3 08 .
4 \ 1.00 o 1.00
3 y, e
/ \ 02 - .
— 0.4 0.50 b 0.50
005 \ . :/< \ >< \ s
T ,/ \ \: —)\ —— = - ’\\.”“\:
~— — 1 === ——
0.0 0.0 0.00 0.00
10° 108 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular ~ —— Monolithic

Figure 87. Out-of-Distribution (Sequence Length: 3 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
0.6 . h
025 150 20 \ 20 \
2 x 04 1.00 \
Soas / \ 10 o \ .
/ \ e, A
0.2 = 0.50 \.
\. —— .>"\T\’ X S \ \
0.05 \ — \ e ——— o M:
T o0 T 000 0.0 00
10° 100 107 10° 108 107 10° 108 107 10° 108 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 88. Out-of-Distribution (Sequence Length: 5 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32
05 o
~
3.0 . 20 % .
N \\\
0.8 20 \ \
0 03 \ 20 20 . \.
2 I 3
=}
3 . \.
. 0.4 = 0 1.0
\ ~ 1.0 1.0
~ ~ O
e S S .\\,\ Y
01 \\\ — T 3 S e S . e O
~— \ \’;‘ ——— | \.\
0.0 0.0 0.0 0.0
10° 106 107 10° 106 107 10° 106 107 108 100 107 105 106 107
Number of Parameters
—— GT-Modular Modular-op Modular ~ —— Monolithic

Figure 89. Out-of-Distribution (Sequence Length: 10 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Is a Modular Architecture Enough?

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

TR \%, PRANNAN

o>

02 © 0.5
10° 108 107 10° 100 107 1
Number of Parameters
—— GT-Modular Modular-op Modular —— Monolithic

Figure 90. Out-of-Distribution (Sequence Length: 20 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

Rules: 2 Rules: 4 Rules: 8 Rules: 16 Rules: 32

2.0 = L 5 L S

25 % 5 SE 5 \\

6 \ . \
2., \ g 3 B8 A \ / \
SN Y 15 < \\ \ 3 == 5 3 " M

\. . — .A J .
v 1 3 .
04 05 \ ! \/ 1 Sy
10° 106 107 "o 108 107 10° 100 107 10° 106 107 10° 108 107
Number of Parameters
—— GT-Modular Modular-op —— Modular —— Monolithic

Figure 91. Out-of-Distribution (Sequence Length: 30 - Individual Token Sampling: Altered) Performance on RNN-Regression
Models. Performance (lower is better) of different models of varying capacities and trained across different number of rules. Each point
on the graph is obtained from an average over five tasks, each with five seeds, totaling 25 runs.

