
Parameter efficient dendritic-tree neurons outperform perceptrons

Ziwen Han * 1 Evgeniya Gorobets * 1 Pan Chen 1

Abstract
Biological neurons are more powerful than arti-
ficial perceptrons, in part due to complex den-
dritic input computations. Inspired to empower
the perceptron with biologically inspired features,
we explore the effect of adding and tuning input
branching factors along with input dropout. This
allows for parameter efficient non-linear input ar-
chitectures to be discovered and benchmarked.
Furthermore, we present a PyTorch module to
replace multi-layer perceptron layers in existing
architectures. Our initial experiments on MNIST
classification demonstrate the accuracy and gener-
alization improvement of dendritic neurons com-
pared to existing perceptron architectures.

1. Introduction
Many artificial neural networks (ANNs) include variants
of the perceptron [10], which takes a linear combination
of input signals and applies a nonlinear activation func-
tion to produce an output signal. More recent neuroscience
research has revealed that the dendrites of a biological neu-
ron perform multiple complex nonlinear computations on
their input signals [6], as opposed to a linear function. Fur-
thermore, neuroscientists have advocated for incorporating
dendritic features to improve existing ANN performance
[1]. Empirically, Jones and Kording have demonstrated that
a single dendritic neuron model with input repetition (k-
trees) can reach accuracy similar to multi-layer perceptrons
(MLPs) of similar parameter size on binary image classi-
fication tasks. [4]. Accordingly, we hypothesize multiple
artificial dendritic neurons working in conjunction could be
more powerful than their MLP counterpart beyond binary
tasks. Current dendritic models are either limited by struc-
tural rigidity or fail to incorporate the tree-like structure of
biological dendrites, which may not capture the full breadth
of dendritic computation.

*Equal contribution 1Department of Computer Science, Univer-
sity of Toronto, Toronto, Canada. Correspondence to: Ziwen Han
<ziwen.han@mail.utoronto.ca>.

DyNN workshop at the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

2. Related Works
2.1. Neuron Models

Multiple works have proposed ANNs based on neuron mod-
els that simulate dendritic input. These alternatives include
dendrite morphological neural networks (DMNNs) [9], den-
dritic neural networks (DENNs) [14], the single dendritic
neuron model (DNM) [12], and most recently the model
by Jones and Kording based on a balanced tree structure
[4]. Our model expands on the work of Jones and Kording
by: (1) exploring the effect of generalizing the dendritic
tree structure to allow tunable branching, dropout, and ac-
tivations without k-tree redundancy; (2) using layers of
dendritic neurons for non-binary classification tasks and
evaluate overfitting; (3) attaching the layer of neurons to a
CNN to evaluate performance as a perceptron replacement.

2.2. Multi-Neurons

Other studies have connected dendritic neurons in MLP-
like architectures [9, 14], including a hybrid DNM-CNN
adaptation of the DNM model [13]. Each of these multi-
neuron architectures uses a fundamentally different neuron
model. DNM neurons connect each dendritic branch to
each input and rely on logical operations, while DMNNs
utilize a different underlying mathematical structure. By
contrast, our model enforces sparse, localized connections
between dendrites and inputs in a tree structure, which more
closely models the spatially-limited connections between
biological neurons. The DENN model enforces dendrite-
input sparsity, but uses one-layer dendrite trees [14]. Our
dendritic trees are deeper, to more closely replicate the
anatomy and complexity of biological neural networks.

3. Methods
3.1. Model Architectures

Using PyTorch (1.10.0+cu111) [7], we implemented a den-
dritic tree neuron based on the Jones-Kording single neuron
model [4] (Figure 2 in the Appendix). Our implementation
generalizes the original architecture by allowing users to
specify the branching factor and number of neurons in the
DendriticLayer. Each DendriticLayer has a con-
stant branching factor, but multiple instances of the module



Parameter efficient dendritic-tree neurons outperform perceptrons

can be stacked together to achieve different branching per
layer. To vectorize the DendriticLayer, we treat the
inputs to all the neurons as a single input tensor, and we
compute the next layer of all dendrite trees simultaneously.
The tree structure is enforced by constructing a mask for the
weight matrix at each layer (Figure 1). Table 1 describes the
full architecture of the DendriticLayer module.

Figure 1. An example of the mask used to enforce the tree structure
in our implementation. The tree structure on the left represents
the dendritic neuron (d = 2, b = 2), rectangles on the right
represent the mask matrices for each tree layer. The mask and
weight matrices are multiplied element-wise. Colored arrows
indicate preserved weights/connections, masked connections are
represented by dashed gray arrows corresponding to zeroes.

We used Jones and Kording’s modified density gain Kaiming
He initialization scheme to account for tree sparsity and
stabilize training [4, 3]. Each weight in the weight matrices
is initially sampled: W

(i)
jk

iid∼ N (0, 2
I·b−i+1·density ), where

density = I·b−i+1

I·b−i+1·I·b−i , and I ·b−i+1, I ·b−i are the number
of input and output units in the ith layer of the dendritic
tree.

Using the DendriticLayer as our base, we built several
multi-layer neuron (MLN) architectures on top of it. (1)
An MLNBinaryClassifier, which is a single neuron
that predicts a binary output activated using a logistic sig-
moid function. (2) An MLNClassifier, which repeats
the same set of inputs to a specified number of neurons (one
for each class) and returns the output of each neuron acti-
vated through a softmax function. (3) A ConvMLN, which
runs the inputs through a CNN (described in Section 9.3 in
the Appendix), then flattens the output of the convolutional
layers and feeds it to a single layer of neurons for classifica-
tion. All models are equipped with a tunable input dropout
layer to be robust against overfitting [11].

3.2. Computational Tasks and Controls

We tested our single neuron models on binary classification
tasks, using a subset of MNIST that consisted only of im-
ages labeled as ”4” or ”9” (referred to as 4-9 MNIST) [2].
We used the full MNIST dataset to test the classification
capabilities of our multi-neuron architectures [2].

For controls, we constructed multi-layer perceptrons (MLPs)
that performed the same tasks as each of our dendritic mod-
els. The architecture of the MLPs is described in Table 2.
The number of hidden units (h) was modified in order to
match the number of parameters in the dendritic models.
The number of parameters in each model is listed in Tables
9, 10, and 11 in the Appendix. Each model was initialized
using the Kaiming He method, but without density gain
since MLPs are not sparse [3].

3.3. Data Preprocessing and Results Analysis

The standard MNIST dataset images are 28× 28. Nearest
neighbour upsampling was used to scale inputs to 32× 32,
to better fit the dendritic branching factors. For non-CNN
architectures, input flattening was applied to create a 1024-
dimension tensor.

To aggregate results from multiple trials, the epoch with
the lowest validation loss was taken from each trial as the
best performance to evaluate at. Post-experiment statistical
analysis was conducted using R [8].

3.4. Model Training

All models were trained on the Google Colab environment
with CUDA for 100 epochs, using a batch size of 128. Every
model was re-initialized and trained 10 times. The learning
rates used for dendritic MLN and MLP models were 0.05
and 0.001, respectively. All models used either binary or
categorical cross entropy loss. All models were trained
using the Adam Optimizer [5].

4. Results
4.1. Single Neuron Binary Classification

We modified the Jones-Kording single neuron model to
investigate the effects of branching factors (b) and dropout
probabilities (p) (Table 3). The control MLPs with similar
numbers of parameters are in Table 4. Dropout models were
tested with p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, but only the best-
performing set of models are reported in each experiment.

4.2. Multi-Neuron Classification

To test non-binary classification, we integrated multiple
neurons in a layer (MLNClassifier). Each neuron con-
nected to the same set of inputs and was expected to predict
a single MNIST digit. The experimental setup identical
to the binary case, as described in Sections 3.4, 4.1. The
average performance of each multi-neuron model and each
control MLP is reported in Tables 5 and 6.



Parameter efficient dendritic-tree neurons outperform perceptrons

y = f (d) ◦ f (d−1) ◦ · · · ◦ f (1)(x) x ∈ RI ,y ∈ RO− the input and output tensors
f (i)(z) = LeakyReLU((W(i) ∗M(i))z+ b) f (i) : RI·b−i+1 → RI·b−i− the function for the ith layer of the dendrite tree

W(i),M(i) ∈ RI·b−i×I·b−i+1− the weight and mask matrices
b(i) ∈ RI·b−i− the bias tensor

I = Obd b− the branching factor; d− the depth of the dendrite tree (# edges)

Table 1. Equations describing the DendriticLayer architecture. The ∗ denotes element-wise matrix multiplication. The LeakyReLU
activations used a negative slope value of 0.1.

Binary MLP Multiclass MLP
Equation y = σ

(
W(2)

(
ReLU(W(1)x+ b(1))

)
+ b(2)) y = softmax

(
W(2)

(
ReLU(W(1)x+ b(1))

)
+ b(2))

First Layer W(1) ∈ Rh×bn,b(1) ∈ Rh W(1) ∈ Rh×bn,b(1) ∈ Rh

Second Layer W(2) ∈ R1×h, b(2) ∈ R W(2) ∈ R10×h,b(2) ∈ R10

Output y ∈ [0, 1] y ∈ [0, 1]10

Table 2. Equations describing control MLP architectures

Single Neuron b p Train Acc. Val. Acc.
1 2 0 0.91 ± 0.06 0.85 ± 0.09
2 4 0 0.94 ± 0.06 0.89 ± 0.06
3 32 0 0.99 ± 0.02 0.91 ± 0.02
4 2 0.4 0.85 ± 0.07 0.89 ± 0.07
5 4 0.5 0.89 ± 0.03 0.92 ± 0.02
6 32 0.3 0.96 ± 0.02 0.92 ± 0.02

Table 3. Mean performance ± standard deviation of a single den-
dritic neuron (MLNBinaryClassifier) on 4-9 MNIST. Mod-
els differ in their branching factor (b) and dropout probability (p).

Binary MLP h p Train Acc. Val. Acc.
1 3 0 0.95 ± 0.15 0.88 ± 0.13
2 2 0 0.86 ± 0.22 0.79 ± 0.19
3 3 0.6 0.95 ± 0.02 0.92 ± 0.01
4 2 0.4 0.97 ± 0.01 0.91 ± 0.01

Table 4. Mean performance ± standard deviation of binary MLPs
on 4-9 MNIST. h = number of hidden units; p = dropout probabil-
ity. MLPs with h = 3 were controls for neurons with b = 2; MLPs
with h = 2 were controls for neurons with b = 4, 32 (smallest
possible two-layer MLP).

MLN b p Train Acc. Val. Acc.
1 2 0 0.75 ± 0.07 0.59 ± 0.04
2 4 0 0.90 ± 0.06 0.67 ± 0.05
3 32 0 0.94 ± 0.05 0.77 ± 0.02
4 2 0.2 0.77 ± 0.06 0.62 ± 0.04
5 4 0.6 0.79 ± 0.07 0.75 ± 0.06
6 32 0.4 0.97 ± 0.02 0.82 ± 0.02

Table 5. Mean performance ± standard deviation of a ten-neuron
single-layer model on MNIST. The models differ in their branching
factor (b) and dropout probability (p).

Multiclass MLP h p Train Acc. Val. Acc.
1 30 0 0.93 ± 0.07 0.63 ± 0.07
2 14 0 0.87 ± 0.08 0.58 ± 0.07
3 11 0 0.87 ± 0.11 0.58 ± 0.04
4 30 0.5 0.92 ± 0.04 0.66 ± 0.04
5 14 0.1 0.89 ± 0.07 0.61 ± 0.06
6 11 0.3 0.86 ± 0.08 0.59 ± 0.07

Table 6. Mean performance ± standard deviation of MLPs on
MNIST. h = number of hidden units; p = dropout probabil-
ity. MLPs with h = 30, 14, 11 were controls for MLNs with
b = 2, 4, 32, respectively.

CNN-MLN b p Train Acc. Val. Acc.
1 2 0 0.82 ± 0.07 0.61 ± 0.08
2 4 0 0.96 ± 0.03 0.74 ± 0.04
3 16 0 0.99 ± 0.02 0.78 ± 0.03
4 2 0.1 0.77 ± 0.07 0.64 ± 0.07
5 4 0.2 0.93 ± 0.04 0.81 ± 0.04
6 16 0.5 0.95 ± 0.02 0.83 ± 0.03

Table 7. Mean performance ± standard deviation of CNN-MLN
models on MNIST classification. The models differ in their branch-
ing factor (b) and dropout probability (p).

4.3. Dendritic Models with CNNs

To explore the potential as a tunable, modular MLP re-
placement in existing architectures, we connected 10 neu-
rons to a simple CNN architecture for MNIST classification
(ConvMLN) as a replacement to the usual perceptrons. This
experimental setup is described in Sections 3.4, 4.1. The
performance of each CNN-MLN and control CNN-MLP is
listed in Tables 7and 8.



Parameter efficient dendritic-tree neurons outperform perceptrons

CNN-MLP h p Train Acc. Val. Acc.
1 29 0 0.97 ± 0.04 0.7 ± 0.05
2 16 0 0.99 ± 0.03 0.7 ± 0.06
3 11 0 0.94 ± 0.06 0.64 ± 0.02
4 29 0.1 0.99 ± 0.02 0.74 ± 0.06
5 16 0.4 0.98 ± 0.02 0.74 ± 0.06
6 11 0.1 0.96 ± 0.06 0.67 ± 0.07

Table 8. Mean performance ± standard deviation of CNN-MLPs
on MNIST. h = # of hidden units; p = dropout probability. CNN-
MLPs with h = 29, 16, 11 were controls for CNN-MLNs with
b = 2, 4, 16, respectively.

4.4. Results Summary

Both increasing branching factor and introducing dropout
significantly improved performance. The best performing
dendritic models were two layers deep, with b =

√
i, where

i is number of inputs to each neuron and p ≥ 0.1. We hy-
pothesize deeper trees led to vanishing gradients; shallow
dendritic trees trained and performed better despite having
fewer parameters. In all experiments, dendritic neuron mod-
els with b = 2 perform worse than their control MLPs, but
neurons with b > 2 surpass their control MLPs in terms of
validation performance and robustness to overfitting, both
with and without dropout. This shows dendritic trees can im-
prove performance while maintaining parameter efficiency
relative to MLP counterparts.

5. Discussion
We created an encapsulated generalized dendritic-tree neu-
ron inspired by Jones and Kording, then combined multiple
of them analagous to multi-layer perceptrons, evaluated
on the MNIST dataset [2, 4]. We investigated the effect
of adding input dropout and increasing branching factor
(decreasing dendritic tree depth) and found both to have
a positive effect on performance. Furthermore, we evalu-
ated our model performance relative to MLPs of similar
parameter size on binary MNIST 4-9 classification and on
full MNIST multi-class classification, both as direct input
and when attached to a simple convolutional neural net-
work. Even without using the k-tree repeated attachment in
Jones-Kording, our model is able to outperform parameter
matched MLPs. Though all models overfit on the training
data, the sparse tree structure reduces it relative to an MLP.

Our work demonstrates the potential for a dendritic tree
neuron of similar parameter size to replace an MLP in a
feed-forward layer, as it gives better robustness to overfitting,
better performance, and potentially better interpretability
due to the hierarchical tree structure. This work also exhibits
the power of input non-linearity over classical perceptron
architecture.

6. Limitations and Future Work
Computational optimization: The current implementation in
PyTorch [7] utilizes masks on full weight matrices, which
add unnecessary computation to a sparse structure. When
the dendritic tree structure is deep, we cannot efficiently
parallelize operations relative to parameter-matched shal-
lower MLPs as the signal is depth-wise sequentially passed
through the tree. However, the theoretical reduction in the
number of operations and parameters still holds. For applica-
bility, future work should focus on optimizing the practical
computations by taking advantage of the tree structure.

Model Tuning: Our current experiments involve naively
attaching the dendritic tree structure to a flattened input.
Up/down-sampling is required for tree-structured vectorized
computations in each layer to match the branching factor,
adding rigidity. Methods for attaching tree-dendrites to
input vectors to take advantage of locality structures are
yet to be investigated. Furthermore, exploration can be
made to automatically tune the branching factor or explore
non-balanced branching as a dynamic feature.

General Applications: It remains to be discovered how well
the dendritic module performs as a perceptron replacement
on tasks outside of MNIST classification. Our experiments
focused mainly on shallow networks; future experiments
can investigate if a similar trend to current results is ob-
served on larger, deeper, state of the art models. We also
focused on testing parameter efficiency with multi-layer
perceptrons against the dendritic neuron counterpart, which
may result in subpar optimal accuracy. Further exploration
is required to evaluate how extreme we can reduce the num-
ber of parameters in the input tree structure relative to a
perceptron while preserving performance.

7. Conclusion
To augment artificial neural networks with biologically in-
spired input non-linearity, we created a general dendritic
neuron module for tunable branching and dropout. Com-
pared against multi-layer perceptrons, our implementation
maintains theoretical parameter efficiency with better perfor-
mance on tuned branching. Promising evaluation on MNIST
classification independently and modularly highlights the
possibility of optimizing and incorporating these structures
into existing architectures for better accuracy and generaliza-
tion. These results suggest input non-linearity structure as a
possible direction to explore for dynamic neural networks.

8. Acknowledgements
We would like to thank Harris Chan from the University of
Toronto for his encouragement and support on this project.



Parameter efficient dendritic-tree neurons outperform perceptrons

References
Chavlis, S. and Poirazi, P. Drawing inspiration from bio-

logical dendrites to empower artificial neural networks.
Current opinion in neurobiology, 70:1–10, 2021.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Jones, I. S. and Kording, K. P. Might a single neuron solve
interesting machine learning problems through successive
computations on its dendritic tree? Neural Computation,
33(6):1554–1571, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

London, M. and Häusser, M. Dendritic computation. Annu.
Rev. Neurosci., 28:503–532, 2005.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-
library.pdf.

R Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2021. URL
https://www.R-project.org/.

Ritter, G. X., Iancu, L., and Urcid, G. Morphological per-
ceptrons with dendritic structure. In The 12th IEEE Inter-
national Conference on Fuzzy Systems, 2003. FUZZ’03.,
volume 2, pp. 1296–1301. IEEE, 2003.

Rosenblatt, F. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological review, 65(6):386, 1958.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Todo, Y., Tamura, H., Yamashita, K., and Tang, Z. Unsuper-
vised learnable neuron model with nonlinear interaction
on dendrites. Neural Networks, 60:96–103, 2014.

Wang, R.-L., Lei, Z., Zhang, Z., and Gao, S. Dendritic
convolutional neural network. IEEJ Transactions on Elec-
trical and Electronic Engineering, 17(2):302–304, 2022.

Wu, X., Liu, X., Li, W., and Wu, Q. Improved expressivity
through dendritic neural networks. Advances in neural
information processing systems, 31, 2018.



Parameter efficient dendritic-tree neurons outperform perceptrons

9. Appendix
9.1. Reproducibility

PyTorch implementation and experiment data linked here:
github.com/zw123han/DendriticNeuralNetwork

9.2. Model Diagrams

Figure 2. Architecture of a single dendritic neuron with branching
b = 3 and flattened input size 3k. Red represents an input dropout,
which is stochastically masked at training time using the PyTorch
dropout layer implementation. A LeakyReLU is applied to each
layer as activation to model the input non-linearity of dendrites.
The output layer, if appropriate, uses a sigmoid/softmax activation
to create a probability vector.

9.3. CNN Architecture

An identical and simple CNN was attached to all classifiers.
The CNN consisted of three sets of convolutions. Each
convolutional layer had kernel size of 5 and a padding of
2. The number of filters in the first layer was 4, the number
of filters in the second layer was 8, the number of filters
in the third layer was 16. Each convolutional layer was
followed by a MaxPool layer (kernel size = 2, stride = 2), a
BatchNorm layer, and a ReLU activation layer.

The initial input to the CNN was a B × 1× 32× 32 tensor,
where B was the batch size, 1 is the number of input chan-
nels (grayscale), and 32× 32 are the dimensions of the up-
sampled MNIST digits. Each set of convolutions and pool-
ing cut the size of the image in half (32 → 16 → 8 → 4).
The final output of the CNN was 16 4×4 maps, which were
flattened into a single 256-unit input before it was given to
the dendritic classifier.

9.4. Model Parameters

Model Weights Biases Total
Neuron Models 1, 4 (b = 2) 2046 1023 3069

MLPs 1, 3 (h = 3) 3075 4 3079
Neuron Models 2, 5 (b = 4) 1364 85 1449

Neuron Models 3, 6 (b = 32) 1056 33 1089
MLPs 2, 4 (h = 2) 2050 3 2053

Table 9. Single Neuron Experiments. Parameter computations for
single-neuron models and their MLP controls. All models ran on
MNIST images upsampled to 32×32 images with binary output.
MLPs 1, 3 (h = 3) have approximately the same number of
parameters as Neuron Models 1, 4 (b = 2), and thus serve as
controls for these models. Similarly, MLPs 2, 4 (h = 2) are the
controls for Neuron Models 2, 3, 5, 6 (b = 4, 32).

Model Weights Biases Total
MLNs 1, 4 (b = 2) 20,460 10,230 30,690
MLPs 1, 4 (h = 30) 31,020 40 31,060
MLNs 2, 5 (b = 4) 13,640 850 14,490
MLPs 2, 5 (h = 14) 14,476 24 14,500
MLNs 3, 6 (b = 32) 10,560 330 10,890
MLPs 3, 6 (h = 11) 11,374 21 11,395

Table 10. Multi-Neuron Single-Layer Experiments. Parameter
computations for multi-neuron single-layer models (MLNs) and
their MLP counterparts. All models ran on MNIST images up-
sampled to 32×32 images, for a total 1024 inputs. Each model
had 10 outputs. MLPs 1, 4 (h = 30) have approximately the same
number of parameters as MLNs 1, 4 (b = 2), and thus serve as
controls for these models. Similarly, MLPs 2, 5 (h = 14) are the
controls for MLNs 2, 5, (b = 4), and MLPs 3, 6 (h = 11) are the
controls for MLNs 3, 6 (b = 32).

Model Weights Biases Total
CNN-MLNs 1, 4 (b = 2) 5100 2550 7650
CNN-MLPs 1, 4 (h = 29) 7714 39 7753
CNN-MLNs 2, 5 (b = 4) 3400 850 4250
CNN-MLPs 2, 5 (h = 16) 4256 26 4282
CNN-MLNs 3, 6 (b = 16) 2720 170 2890
CNN-MLPs 3, 6 (h = 11) 2926 21 2947

Table 11. CNN Experiments. Parameter computations for CNN
classification models. All models ran on MNIST images upsam-
pled to 32×32 images, for a total 1024 inputs. Each classifier was
attached to the same CNN (described in Section 7.4), which output
a 256-dim tensor. Thus, each classifier had 256 inputs and 10
outputs. CNN-MLPs 1, 4 (h = 29) have approximately the same
number of parameters as CNN-MLNs 1, 4 (b = 2), and thus serve
as controls for these models. Similarly, CNN-MLPs 2, 5 (h = 16)
are the controls for CNN-MLNs 2, 5, (b = 4), and CNN-MLPs 3,
6 (h = 11) are the controls for CNN-MLNs 3, 6 (b = 16).


