
Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Lianke Qin 1 Somdeb Sarkhel 2 Zhao Song 2 Danyang Zhuo 3

Abstract
Computing the product of a kernel matrix and
a vector is the most basic and important opera-
tion in high-performance machine learning and
scientific computing. The speed for this calcula-
tion determines plays a critical role in the overall
performance of machine learning training and in-
ference. As dataset sizes rapidly increase, the
dimension of the kernel matrix also increase ac-
cordingly, and this product computation is increas-
ingly a performance bottleneck. In the meantime,
our observation is that many popular kernel ma-
trices are inherently sparse, due to natural data
distributions. In this paper, we design an efficient
data structure to approximate kernel matrix vector
multiplication. Our data structure is a search tree
which enables us to quickly extract those entries
and calculate the multiplication results.

1. Introduction
Kernel method is an important class of machine learning
techniques. It is widely used in classification (Elisseeff &
Weston, 2001; Kashima et al., 2003; Weston et al., 2003;
Rousu et al., 2006; Hoi et al., 2006), deep neural net-
works (Cho & Saul, 2009; Wilson et al., 2016b;a; Belkin
et al., 2018), and computer vision (Tuzel et al., 2009; Jaya-
sumana et al., 2013; Fang et al., 2021). When using the
kernel method, we often need to compute the product of
a kernel matrix and a vector. The speed for this compu-
tation determines the overall performance of the higher
level machine learning and scientific computing tasks. The
previous work on the fast multiple method (Greengard &
Rokhlin, 1987; Greengard, 1988; Greengard & Rokhlin,
1988) designs algorithms with a (log(n/ϵ))O(d)n1+o(1) run-
ning time complexity for ϵ-approximate matrix-vector mul-

*Equal contribution 1University of California, Santa
Barbara 2Adobe Research 3Duke University. Correspon-
dence to: Lianke Qin <lianke@ucsb.edu>, Somdeb Sarkhel
<sarkhel@adobe.com>, Zhao Song <zsong@adobe.com>,
Danyang Zhuo <danyang@cs.duke.edu>.

DyNN workshop at the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

tiplication for a number of kernel functions K, includ-
ing when K(x, y) = 1

∥x−y∥c
2

for a constant c and when

K(x, y) = e−∥x−y∥2
2 .

The dimension of the kernel matrix is the same as the size
of the dataset. Modern dataset has increasing numbers of
samples. This makes the calculation of a kernel matrix and
a vector increasingly slow. In the meantime, our observation
is many data distributions naturally lead to sparse kernel ma-
trices. For example, when data are clustered around several
locations, the entry in the kernel matrix is non-negligible if
only if the corresponding data points are in the same cluster.
This raises an important question:

Can we speed up the kernel matrix vector multiplication
time for sparse kernel matrices?

We have an affirmative answer. Our approach uses an ef-
ficient search tree data structure design. The search tree
enables us to quickly locate non-negligible entries in a large
kernel matrix. During the multiplication, we simply omit
negligible entries to speed up the matrix vector computa-
tion. This approach enables us to compute the kernel vector
multiplication efficiently when the kernel entries are highly
sparse. This truncated matrix vector multiplication is mo-
tivated by activation functions like ReLU which sets the
output as zero if the corresponding input values do not sur-
pass certain threshold.

Our experiments show that our truncation kernel multipli-
cation can bring up to 8.33× speedup while maintaining
< 10% L1 norm error rate in many kernels compared with
the non-truncation kernel multiplication. Our paper makes
the following contributions:

• We design a search tree based data structure to support
fast and dynamic truncation kernel-vector multiplica-
tion with sublinear time complexity.

• We use experiments to quantify what type of kernels
our approach works and show the tradeoff between the
speedup improvement and accuracy drop of truncated
matrix multiplication.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

2. Related Work
Kernel Methods When it comes to instance-based learn-
ers, kernel techniques are very similar. The i-th training
data point (xi, yi) is remembered and a weight parameter
wi is learned for the training data, rather than learning a pre-
determined set of parameters corresponding to the features
of their inputs, as is the case with traditional approaches.
With the training inputs xi and the unlabeled data point x′,
we can make educated guesses. There have been some new
discoveries in the field of deep neural networks and ker-
nels. (Daniely et al., 2016; Daniely, 2017; Chizat & Bach,
2018; Jacot et al., 2018; Brand et al., 2021; Song et al., 2021).
Moreover, our work on truncated kernel multiplication is
also relevant to the kernel regression problem. (Alaoui &
Mahoney, 2015; Zhang et al., 2015; Avron et al., 2017;
Zandieh et al., 2020).

Gaussian Kernels Gaussian kernels have been used in
many machine learning problems (Wang et al., 2009; Li
et al., 2019; Wenliang et al., 2019; Liao et al., 2020). Dziu-
gaite et al. (Dziugaite et al., 2015) uses gaussian kernel to
improve the generalization error during learning generative
models from i.i.d. data with unknown distribution. Gaussian
kernel is also used within Generative moment matching net-
work (GMMN) to improve both the model expressiveness
of GMMN and its computational efficiency (Li et al., 2017).

Kernel Matrix Vector Multiplication The prior work
on the fast multiple method (Greengard & Rokhlin, 1987;
Greengard, 1988; Greengard & Rokhlin, 1988) designs algo-
rithms with time complexity of (log(n/ϵ))O(d)n1+o(1) for
ϵ-approximate adjacency matrix-vector multiplication for a
number of kernel functions K, including when K(x, y) =

1
∥x−y∥c

2
for a constant c and when K(x, y) = e−∥x−y∥2

2 . On
the negative side, (Alman et al., 2020) proved the hardness
result under exponential time hypothesis. (Huang et al.,
2022) shows how to dynamically maintain the answers
when data points are changing over the time. There are
also many hardware accelerated sparse matrix multiplica-
tion work (Yang et al., 2018; Huang et al., 2020; Jain et al.,
2020; Xie et al., 2021; Dai et al., 2022).

Inner Product Search Under the assumption that all the
points are on unit sphere, then the ℓ2 distance between x and
y is equivalent to inner product between x and y. Recently,
computing inner product exactly or approximately has been
applied to many machine learning applications such as dis-
crepancy (Song et al., 2022b), tree-width LP problems (Ye,
2021; Dong et al., 2021), sparsification (Song et al., 2022b),
frank-wolfe method (Shrivastava et al., 2021a), reinforce-
ment learning (Shrivastava et al., 2021b), and Fourier-signal
interpolation (Song et al., 2022a).

3. Our Data Structures
We present a new data-structure for efficiently computing
the truncated matrix vector multiplication in this section.
We delay the algorithm description to Section A due to
space reason.

3.1. Definitions

We define the kernel matrix in Definition 3.1.

Definition 3.1. Given x1, · · · , xn ⊂ Rd and y1, · · · , ym ⊂
Rd. We define matrix K ∈ Rn×m as follows:

Ki,j := f(xi, yj).

Then we define the truncated matrix vector multiplication
in Definition 3.2.

Definition 3.2 (Truncated Matrix Vector Multiplication).
Let K be defined as definition 3.1, for any query vector
v ∈ Rm and a truncation threshold τ , the goal is to compute

m∑
j=1

vj · Ki,j · 1⟨xi,yj⟩≥τ ,∀i ∈ [n]

3.2. Our Theorem

In this section, we present our main theorem in Theorem 3.3
and prove it with individual lemmas for each operation of
our data structure.

Theorem 3.3 (Main Theorem). Assume the time complexity
of evaluating f(x, y) is Tf . There exists a data structure
which uses O(mn + d(m + n)) spaces and supports the
following operations:

• INIT(y1, y2, · · · , ym ∈ Rd, x1, x2, · · · , xn ∈ Rd).
Given y1, y2, · · · , ym ∈ Rd and n data points
x1, x2, · · · , xn ∈ Rd, the time complexity of INIT op-
eration is O(mn(d+ Tf )).

• UPDATE(z ∈ Rd, j ∈ [m]). Given z ∈ Rd and an
index j ∈ [m], the UPDATE operation runs in O(n(d+
log(m) + Tf )) time.

• QUERY(i ∈ [n], τ ∈ R). Given an index i ∈ [n] and a
threshold τ ∈ R as input and let Ki denote the number
of entries of above τ in tree Ti, the QUERY operation
runs in O(Ki log(m)) time and output a set containing
all yj such that ⟨xi, yj⟩ ≥ τ in tree Ti.

• MULTIPLY(v ∈ Rm, τ ∈ R), Given a vector v ∈ Rd

and a threshold τ ∈ R as input, and let Ki denote the
number of entries of above τ in each tree Ti, MUL-
TIPLY outputs the result of truncated matrix vector
multiplication K · v in O(

∑n
i=1 Ki log(m)) time.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Proof. By combining Lemma 3.4, Lemma 3.5 and
Lemma 3.7, we can prove the correctness of QUERYSUB,
QUERY and MULTIPLY operations in Theorem 3.3.

3.3. Correctness of Query

We first need to prove the correctness of QUERYSUB in
Lemma 3.4 and delay the proof to Section B.1.

Lemma 3.4 (Correctness of QUERYSUB). Given a thresh-
old τ ∈ R and a node r ∈ T , let i ∈ [n] denote the index of
the tree which contains node r as input, and let Ki denote
the number of entries of above τ in tree Ti, the QUERYSUB
operation outputs a set containing all yj ∈ Rd such that
⟨xi, yj⟩ ≥ τ in the subtree whose root is r.

With the above lemma, we can prove the correctness of
QUERY in Lemma 3.5 an delay the proof to Section B.1.

Lemma 3.5 (Correctness of QUERY). Given an index i ∈
[n] and a threshold τ ∈ R as input, the QUERY outputs a
set containing all yj such that ⟨xi, yj⟩ ≥ τ in tree Ti.

3.4. Correctness of Multiplication

In this section, we first prove the correctness of MULTIPLY-
SUB in Lemma 3.6 and delay the proof to Section B.2.

Lemma 3.6 (Correctness of MULTIPLYSUB). Given an
index i, a vector v ∈ Rd and a threshold τ ∈ R as input,
and let Ki denote the number of entries of above τ in tree
Ti, MULTIPLYSUB outputs the result of truncated vector
inner product Ki · v.

With the above lemma, we can prove the correctness of
MULTIPLY in Lemma 3.7 and delay the proof to Section B.2.

Lemma 3.7 (Correctness of MULTIPLY). Given a vector
v ∈ Rd and a threshold τ ∈ R as input, and let Ki denote
the number of entries of above τ in each tree Ti, MULTIPLY
outputs the result of truncated matrix vector multiplication
K · v.

3.5. Running Time

In this section, we want to prove the time complexity of
the operations in our data structure. We first prove the time
complexity of INIT in the following lemma and delay the
proof to Section B.3.

Lemma 3.8 (Time complexity of INIT). Given
y1, y2, · · · , ym ∈ Rd and n data points x1, x2, · · · , xn ∈
Rd as input, INIT operation runs in O(mn(d+ Tf )) time.

We prove the time complexity of UPDATE in Lemma 3.9
and delay the proof to Section B.3.

Lemma 3.9 (Time complexity of UPDATE). Given z ∈ Rd

and an index j ∈ [m] as input, the UPDATE operation runs

in O(n(d+ log(m) + Tf )) time.

3.5.1. RUNNING TIME OF QUERY

In this section we prove the time complexity of QUERYSUB
in Lemma 3.10 and QUERY in Lemma 3.11 respectively and
delay the proof to Section B.3.

Lemma 3.10 (Time complexity of QUERYSUB). Given a
threshold τ ∈ R and a node r ∈ T as input, let i denote the
index of the tree which contains node r and let Ki denote
the number of entries of above τ in tree Ti. The QUERYSUB
operation runs in O(log(m)) time.

Lemma 3.11 (Time complexity of QUERY). Given an index
i ∈ [n] and a threshold τ ∈ R as input and let Ki denote
the number of entries of above τ in tree Ti, the QUERY
operation runs in O(Ki log(m)) time.

3.5.2. RUNNING TIME OF MULTIPLICATION

In this section we prove the time complexity of MULTI-
PLYSUB in Lemma 3.12 and MULTIPLY in Lemma 3.13
respectively and delay the proof to Section B.3.

Lemma 3.12 (Time complexity of MULTIPLYSUB). Given
an index i, a vector v ∈ Rd and a threshold τ as input and
let Ki denote the number of entries of above τ in tree Ti,
the MULTIPLYSUB operation output the truncated vector
inner product Ki · v in O(Ki log(m)) time.

Lemma 3.13 (Time complexity of MULTIPLY). Given a
vector v ∈ Rd as input and let Ki denote the number of
entries of above τ in each tree Ti, the MULTIPLY operation
output the truncated matrix vector multiplication K · v in
O(

∑n
i=1 Ki log(m)) time.

4. Evaluation
Experiment setup. We evaluate our algorithm with n =
2048, d = 64 and m = 2048 randomly generated data
points {xi}ni=1 and {yj}mj=1, where {xi}ni=1 are generated
by 32 random clusters and each cluster contains 64 data
points. We run our simulation on an Intel i7-9700 and 64GB
memory machine with Python 3.6.9 installed. We bench-
mark 5 different kernels including: (1) Gaussian kernel. (2)
Polynomial kernel. (3) Laplacian kernel. (4) Rational kernel.
(5) T-student. The code is available at https://github.
com/brucechin/truncation_kernel_mul. We
run MULTIPLY for 100 times to obtain the average time
consumption and L1 and L2 norm error rate compared to
non-truncated matrix vector multiplication per setting. We
want to answer the following questions:

• Q1: For different truncation degree, what is the re-
lationship between MULTIPLY running time speedup
compared with truncating each kernel entry with thresh-
old sequentially?

https://github.com/brucechin/truncation_kernel_mul
https://github.com/brucechin/truncation_kernel_mul


Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

• Q2: For different kernel functions, what is the relation-
ship between MULTIPLY accuracy compared with non-
truncated kernel multiplication under different trunca-
tion percentages?

3.05 3.0 2.95 2.9 2.85 2.8 2.75 2.7 2.65 2.6
Truncation percentage(%)

8.00
8.25
8.50
8.75
9.00
9.25
9.50

Sp
ee

du
p

Figure 1: Speedup under different truncation percentage.
Q1. From Fig 1, we find that MULTIPLY achieves 8.33×
speedup compared with truncating each kernel entry with
threshold sequentially. This speedup comes from efficiently
locating the kernel indexes in logarithmic time for trun-
cated kernel multiplication. As the truncation percentage
decreases, the speedup grows. Because QUERY operation
will early terminate for more recursive calls and yield to
faster execution when the truncation percentage decreases.
This speedup is independent from the kernel type.

Q2. For Gaussian (Fig 2), T-student (Fig 3) and Lapla-
cian (Fig 6) kernels, our MULTIPLY can achieve < 10%
L1 norm error rate and < 40% L2 norm error rate when
the truncation percentage is larger than 3.0%. For Polyno-
mial kernel (Fig 4), our MULTIPLY can achieve < 2% L1
norm error rate and < 20% L2 norm error rate when the
truncation percentage is larger than 3.0%. When the trun-
cation percentage drops below 3.0%, the L1 and L2 error
rates increase sharply as the truncation percentage decreases.
This is because MULTIPLY leverages less kernel entries to
compute the multiplication which yields to lower accuracy.

For Tanh(Fig 5), Multiquadratic(Fig 7) and Inverse multi-
quadratic(Fig 8) kernels, our MULTIPLY yields to bad mul-
tiplication accuracy compared to the non-truncated matrix-
vector multiplication.

From the cumulative distribution function and probability
density function figures of these kernels (From Fig 2 to Fig 9,
part (a) and (b)), we find that for the kernels that yields
low error rate with our truncation kernel multiplication,
their probability density function turns out to be polarized
and most of the kernel entries are small and can contribute
little to the multiplication results. Our truncation kernel
multiplication data structure can effectively filter out those
negligible kernel entries and only use the important entries
for the kernel multiplication to obtain speedup.

5. Conclusion
The most fundamental operation in machine learning is
computing the product of a kernel matrix and a vector. The

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.970

0.975

0.980

0.985

0.990

0.995

1.000

CD
F 

pe
rc

en
ta

ge

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.1
0.2
0.3
0.4
0.5
0.6

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 2: Gaussian kernel (a) CDF figure. (b) PDF figure. (c) L1
and L2 norm error rates under different truncation degree

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.970

0.975

0.980

0.985

0.990

0.995

1.000

CD
F 

pe
rc

en
ta

ge

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.1
0.2
0.3
0.4
0.5
0.6

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 3: Tstudent kernel (a) CDF figure. (b) PDF figure. (c) L1
and L2 norm error rates under different truncation degree

0 1 2 3 4
Value 1e13

0.90

0.92

0.94

0.96

0.98

1.00
CD

F 
pe

rc
en

ta
ge

(a)

0 1 2 3 4
Value 1e13

0.0

0.2

0.4

0.6

0.8

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 4: Polynomial kernel (a) CDF figure. (b) PDF figure. (c)
L1 and L2 norm error rates under different truncation degree

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00

Value

0.5

0.6

0.7

0.8

0.9

1.0

CD
F 

pe
rc

en
ta

ge

(a)

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00

Value

0.0

0.1

0.2

0.3

0.4

0.5

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.70

0.75

0.80

0.85

0.90

Er
ro

r r
at

e
Error rate L1 norm
Error rate L2 norm

(c)

Figure 5: Tanh kernel (a) CDF figure. (b) PDF figure. (c) L1 and
L2 norm error rates under different truncation degree

speed at which this computation is performed is critical for
machine learning training and inference performance. As
dataset sizes grow larger, the dimension of the kernel matrix
grows larger as well, and this kernel multiplication becomes
an increasingly significant performance bottleneck. Based
on the observation that a large number of popular kernel
matrices are inherently sparse, we design an efficient data
structure for approximating kernel matrix vector multipli-
cation. Our experiments demonstrate that when compared
to baseline truncation kernel multiplication, our truncation
kernel multiplication can achieve a speedup of up to 8.33×
while maintaining a 10% L1 norm error rate against non-
truncated kernel multiplication.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

References
Alaoui, A. and Mahoney, M. W. Fast randomized kernel

ridge regression with statistical guarantees. Advances in
neural information processing systems, 28, 2015.

Alman, J., Chu, T., Schild, A., and Song, Z. Algorithms
and hardness for linear algebra on geometric graphs. In
2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 541–552. IEEE, 2020.

Avron, H., Clarkson, K. L., and Woodruff, D. P. Faster ker-
nel ridge regression using sketching and preconditioning.
SIAM Journal on Matrix Analysis and Applications, 38
(4):1116–1138, 2017.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. In Inter-
national Conference on Machine Learning, pp. 541–549.
PMLR, 2018.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Train-
ing (overparametrized) neural networks in near-linear
time. In ITCS, 2021.

Chizat, L. and Bach, F. A note on lazy training in su-
pervised differentiable programming. arXiv preprint
arXiv:1812.07956, 8, 2018.

Cho, Y. and Saul, L. Kernel methods for deep learning.
Advances in neural information processing systems, 22,
2009.

Dai, G., Huang, G., Yang, S., Yu, Z., Zhang, H., Ding, Y.,
Xie, Y., Yang, H., and Wang, Y. Heuristic adaptability
to input dynamics for spmm on gpus. arXiv preprint
arXiv:2202.08556, 2022.

Daniely, A. Sgd learns the conjugate kernel class of the
network. Advances in Neural Information Processing
Systems, 30, 2017.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. Advances In Neural
Information Processing Systems, 29, 2016.

Dong, S., Lee, Y. T., and Ye, G. A nearly-linear time
algorithm for linear programs with small treewidth: A
multiscale representation of robust central path. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2021.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. Training
generative neural networks via maximum mean discrep-
ancy optimization. arXiv preprint arXiv:1505.03906,
2015.

Elisseeff, A. and Weston, J. A kernel method for multi-
labelled classification. Advances in neural information
processing systems, 14, 2001.

Fang, P., Harandi, M., and Petersson, L. Kernel methods
in hyperbolic spaces. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10665–
10674, 2021.

Greengard, L. The rapid evaluation of potential fields in
particle systems. MIT press, 1988.

Greengard, L. and Rokhlin, V. A fast algorithm for particle
simulations. Journal of computational physics, 73(2):
325–348, 1987.

Greengard, L. and Rokhlin, V. On the evaluation of electro-
static interactions in molecular modeling. In Proceedings
of the Nobel Symposium on Structure and Dynamics in
Biological Systems, Dec. 6-9, 1988, 1988.

Hoi, S. C., Lyu, M. R., and Chang, E. Y. Learning the
unified kernel machines for classification. In Proceed-
ings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 187–196,
2006.

Huang, B., Song, Z., Weinstein, O., Zhang, H., and Zhang,
R. A dynamic fast gaussian transform. arXiv preprint
arXiv:2202.12329, 2022.

Huang, G., Dai, G., Wang, Y., and Yang, H. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on
gpus for graph neural networks. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–12. IEEE, 2020.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018.

Jain, A. K., Omidian, H., Fraisse, H., Benipal, M., Liu,
L., and Gaitonde, D. A domain-specific architecture
for accelerating sparse matrix vector multiplication on
fpgas. In 2020 30th International conference on field-
programmable logic and applications (FPL), pp. 127–
132. IEEE, 2020.

Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and
Harandi, M. Kernel methods on the riemannian manifold
of symmetric positive definite matrices. In proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 73–80, 2013.

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized ker-
nels between labeled graphs. In Proceedings of the 20th
international conference on machine learning (ICML-03),
pp. 321–328, 2003.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
B. Mmd gan: Towards deeper understanding of moment
matching network. Advances in neural information pro-
cessing systems, 30, 2017.

Li, C.-L., Chang, W.-C., Mroueh, Y., Yang, Y., and Póczos,
B. Implicit kernel learning. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp.
2007–2016. PMLR, 2019.

Liao, Z., Couillet, R., and Mahoney, M. W. A random matrix
analysis of random fourier features: beyond the gaussian
kernel, a precise phase transition, and the corresponding
double descent. Advances in Neural Information Process-
ing Systems, 33:13939–13950, 2020.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J.
Kernel-based learning of hierarchical multilabel classifi-
cation models. Journal of Machine Learning Research,
7:1601–1626, 2006.

Shrivastava, A., Song, Z., and Xu, Z. Breaking the linear
iteration cost barrier for some well-known conditional gra-
dient methods using maxip data-structures. NeurIPS’21,
2021a.

Shrivastava, A., Song, Z., and Xu, Z. Sublinear least-squares
value iteration via locality sensitive hashing, 2021b.

Song, Z., Yang, S., and Zhang, R. Does preprocessing help
training over-parameterized neural networks? Advances
in Neural Information Processing Systems, 34, 2021.

Song, Z., Sun, B., Weinstein, O., and Zhang, R. Sparse
fourier transform over lattices: A unified approach to
signal reconstruction. http://arxiv.org/abs/2205.00658,
2022a.

Song, Z., Xu, Z., and Zhang, L. Speeding up sparsification
with inner product search data structures. 2022b. URL
https://arxiv.org/pdf/2204.03209.pdf.

Tuzel, O., Porikli, F., and Meer, P. Kernel methods for
weakly supervised mean shift clustering. In 2009 IEEE
12th International Conference on Computer Vision, pp.
48–55. IEEE, 2009.

Wang, J., Lu, H., Plataniotis, K. N., and Lu, J. Gaussian
kernel optimization for pattern classification. Pattern
recognition, 42(7):1237–1247, 2009.

Wenliang, L., Sutherland, D. J., Strathmann, H., and Gretton,
A. Learning deep kernels for exponential family densities.
In International Conference on Machine Learning, pp.
6737–6746. PMLR, 2019.

Weston, J., Zhou, D., Elisseeff, A., Noble, W., and Leslie, C.
Semi-supervised protein classification using cluster ker-
nels. Advances in neural information processing systems,
16, 2003.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Artificial intelligence and statis-
tics, pp. 370–378. PMLR, 2016a.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., and Xing, E. P.
Stochastic variational deep kernel learning. Advances in
Neural Information Processing Systems, 29, 2016b.

Xie, X., Liang, Z., Gu, P., Basak, A., Deng, L., Liang,
L., Hu, X., and Xie, Y. Spacea: Sparse matrix vec-
tor multiplication on processing-in-memory accelera-
tor. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 570–
583. IEEE, 2021.

Yang, C., Buluc, A., and Owens, J. D. Design principles
for sparse matrix multiplication on the gpu. In Euro-
pean Conference on Parallel Processing, pp. 672–687.
Springer, 2018.

Ye, G. Fast algorithm for solving structured convex pro-
grams. Master’s thesis, The University of Washington,
2021.

Zandieh, A., Nouri, N., Velingker, A., Kapralov, M., and
Razenshteyn, I. Scaling up kernel ridge regression via
locality sensitive hashing. In International Conference
on Artificial Intelligence and Statistics, pp. 4088–4097.
PMLR, 2020.

Zhang, Y., Duchi, J., and Wainwright, M. Divide and con-
quer kernel ridge regression: A distributed algorithm with
minimax optimal rates. The Journal of Machine Learning
Research, 16(1):3299–3340, 2015.

https://arxiv.org/pdf/2204.03209.pdf


Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Roadmap. We present our algorithm description in Section A. We present the missing proofs of the correctness and time
complexity of our data structure in Section B. We present the additional evaluation figures in Section C.

A. Truncation Kernel Multiplication Algorithm
In this section, we provide our truncation kernel multiplication algorithm in Algorithm 1 and Algorithm 2.

Algorithm 1 Multiple tree

1: data structure MULTIPLE TREE
2: members
3: Y ∈ Rm×d ▷ m data points
4: X ∈ Rn×d ▷ n data points
5: K ∈ Rn×m ▷ The kernel matrix in Definition 3.1
6: Binary tree T1, T2, · · · , Tn ▷ n binary search trees
7: f : Rd × Rd → Rd

8: end members
9: procedure INIT(y1, y2, · · · , ym ∈ Rd, x1, x2, · · · , xn ∈ Rd, f : Rd × Rd → Rd) ▷ Lemma 3.8

10: f ← f
11: for i = 1→ n do
12: xi ← xi

13: end for
14: for j = 1→ m do
15: yj ← yj
16: end for
17: for i = 1→ n do ▷ for data point, we create a tree
18: for j = 1→ m do
19: uj ← ⟨xi, yj⟩
20: Ki,j ← f(xi, yj)
21: end for
22: Ti ← MAKEMAXTREE(u1, · · · , um) ▷ Each node stores the maximum value for his two children
23: end for
24: end procedure
25: procedure UPDATE(z ∈ Rd, j ∈ [m]) ▷ Lemma 3.9
26: yj ← z
27: for i = 1→ n do
28: l← the l-th leaf of tree Ti

29: l.value = ⟨z, xi⟩
30: Ki,j = f(xi, yj) ▷ Update the kernel
31: while l is not root do
32: p← parent of l
33: p.value← max{p.value, l.value}
34: l← p
35: end while
36: end for
37: end procedure

B. Missing Proofs
In this section, we provide the missing proofs of the correctness and time complexity of our data structure.

B.1. Correctness of QUERY

Lemma B.1 (Restatement of Lemma 3.4). Given a threshold τ ∈ R and a node r ∈ T , let i ∈ [n] denote the index of the
tree which contains node r as input, and let Ki denote the number of entries of above τ in tree Ti, the QUERYSUB operation



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Algorithm 2 Multiple trees

1: procedure QUERY(i ∈ [n], τ ∈ R) ▷ Lemma 3.5 and Lemma 3.11
2: QUERYSUB(τ, root(Ti))
3: end procedure
4: procedure QUERYSUB(τ ∈ R, r ∈ T ) ▷ Lemma 3.4 and Lemma 3.10
5: if r is leaf then
6: if ur ≥ τ then
7: return r
8: else
9: return 0

10: end if
11: else
12: r1 ← left child of r, r2 ← right child of r
13: if r1.value ≥ τ then
14: S1 ←QUERYSUB(τ, r1)
15: end if
16: if r2.value ≥ τ then
17: S2 ←QUERYSUB(τ, r2)
18: end if
19: end if
20: return S1 ∪ S2

21: end procedure
22: procedure MULTIPLYSUB(i ∈ [n], v ∈ Rm, τ ∈ R) ▷ Lemma 3.6 and Lemma 3.12
23: R← 0, S ← QUERY(i, τ)
24: for j ∈ S do ▷ Only compute the truncated entries.
25: R + = vj · Ki,j

26: end for
27: return R
28: end procedure
29: procedure MULTIPLY(v ∈ Rd, τ ∈ R) ▷ Lemma 3.7 and Lemma 3.13
30: R← {}
31: for i = 1→ n do
32: R.APPEND(MULTIPLYSUB(i, v, τ))
33: end for
34: return R
35: end procedure

outputs a set containing all yj ∈ Rd such that ⟨xi, yj⟩ ≥ τ in the subtree whose root is r.

Proof. We prove Lemma 3.4 by induction. The base case when the node r ∈ T is the leaf node and the node height i = 0,
the correctness of QUERYSUB is trivially true. Assume for the node height i = 0, 1, · · · , k we have proven Lemma 3.4 to
be true. When the node height i = k + 1, we know S1 ←QUERYSUB(τ, r1) contains all yj such that ⟨xi, yj⟩ ≥ τ in the
left subtree of r and S2 ←QUERYSUB(τ, r2) contains all yj such that ⟨xi, yj⟩ ≥ τ in the right subtree of r. Therefore, the
S1 ∪ S2 contains all all yj such that ⟨xi, yj⟩ ≥ τ in the subtree whose root is r. This completes the proof.

Lemma B.2 (Restatement of Lemma 3.5). Given an index i ∈ [n] and a threshold τ ∈ R as input, the QUERY operation
outputs a set containing all yj such that ⟨xi, yj⟩ ≥ τ in tree Ti.

Proof. Because QUERY calls QUERYSUB at the root of tree Ti, from Lemma 3.4, we have that QUERY can output all yj
such that ⟨xi, yj⟩ ≥ τ in tree Ti correctly.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

B.2. Correctness of Multiplication

Lemma B.3 (Restatement of Lemma 3.6). Given an index i, a vector v ∈ Rd and a threshold τ ∈ R as input, and let Ki

denote the number of entries of above τ in tree Ti, MULTIPLYSUB outputs the result of truncated vector inner product Ki · v.

Proof. From Lemma 3.5, we know that QUERY(i, τ) can correctly output a set S of size Ki containing all entries above τ .
In MULTIPLYSUB, we can obtain the correct result of truncated vector product Ki · v by accumulating R[i] + = vj · Ki,j

for all j ∈ S. This completes the proof.

Lemma B.4 (Restatement of Lemma 3.7). Given a vector v ∈ Rd and a threshold τ ∈ R as input, and let Ki denote the
number of entries of above τ in each tree Ti, MULTIPLY outputs the result of truncated matrix vector multiplication K · v.

Proof. With Lemma 3.6, we know that for i ∈ [n], MULTIPLYSUB computes the correct vector inner product Ki · v. By
combining the n scalar output of MULTIPLYSUB, we know that MULTIPLY computes the result truncated matrix vector
multiplication K · v. This completes the proof.

B.3. Running Time

Lemma B.5 (Restatement of Lemma 3.8). Given y1, y2, · · · , ym ∈ Rd and n data points x1, x2, · · · , xn ∈ Rd as input,
the INIT operation runs in O(mn(d+ Tf )) time.

Proof. We can view the INIT operation as having the following steps:

• It takes O(mnd) time to compute vector inner dot product between two Rd vectors ⟨xi, yj⟩ for mn times.

• It takes O(n log(m)) time to build binary tree Ti for n times.

• It takes O(mnTf ) time to compute f(xi, yj) for mn times.

Thus, the total running time of INIT is

O(mnd) +O(n log(m)) +O(mnTf ) = O(mn(d+ Tf )).

Lemma B.6 (Restatement of Lemma 3.9). Given z ∈ Rd and an index j ∈ [m] as input, the UPDATE operation runs in
O(n(d+ log(m) + Tf )) time.

Proof. In UPDATE operation, we need to update all n trees {Ti}ni=1. We can view the tree update as having the following
steps:

• It takes O(nd) time to compute vector inner product between two Rd vectors ⟨z, xi⟩ for n times.

• It takes O(log(m)) time to update a tree of O(log(m)) height from leaf node up to the root. There are n trees, so the
total time is O(n log(m)).

• It takes O(nTf ) time to compute f(xi, yj) for n times.

Thus, the total running time of UPDATE is

O(nd) +O(n log(m)) +O(nTf ) = O(n(d+ log(m) + Tf ))

Lemma B.7 (Restatement of Lemma 3.10). Given a threshold τ ∈ R and a node r ∈ T as input, let i denote the index of
the tree which contains node r and let Ki denote the number of entries of above τ in tree Ti. The QUERYSUB operation
runs in O(log(m)) time.



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

Proof. The QUERYSUB operation calls itself recursively on its left and right child until meeting the leaf node. The depth of
the tree is O(log(m)), and the comparison check is O(Ki) per level. Therefore, the overall time complexity of QUERYSUB
is O(Ki log(m)).

Lemma B.8 (Restatement of Lemma 3.11). Given an index i ∈ [n] and a threshold τ ∈ R as input and let Ki denote the
number of entries of above τ in tree Ti, the QUERY operation runs in O(Ki log(m)) time.

Proof. The QUERY call QUERYSUB at the root node of tree Ti, so the time complexity of QUERY is O(Ki log(m)).

Lemma B.9 (Restatement of Lemma 3.12). Given an index i, a vector v ∈ Rd and a threshold τ as input and let Ki denote
the number of entries of above τ in tree Ti, the MULTIPLYSUB operation output the truncated vector inner product Ki · v in
O(Ki log(m)) time.

Proof. We can view the MULTIPLYSUB operation as having the following steps:

• It takes O(Ki log(m)) to call QUERY operations.

• It takes O(Ki) time to compute scalar multiplication vj · Ki,j for O(Ki) times.

Thus, the total running time of MULTIPLYSUB is

O(Ki log(m) +O(log(m)) = O(Ki log(m))

Lemma B.10 (Restatement of Lemma 3.13). Given a vector v ∈ Rd as input and let Ki denote the number of entries of above
τ in each tree Ti, the MULTIPLY operation output the truncated matrix vector multiplication K · v in O(

∑n
i=1 Ki log(m))

time.

Proof. We can view the MULTIPLY operation as executing MULTIPLYSUB for n times. From Lemma 3.12 we can know the
overall time complexity of MULTIPLY is :

n∑
i=1

O(Ki log(m)) = O(

n∑
i=1

Ki log(m))

C. Additional Evaluation Figures

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.970

0.975

0.980

0.985

0.990

0.995

1.000

CD
F 

pe
rc

en
ta

ge

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.1
0.2
0.3
0.4
0.5
0.6

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 6: Laplacian kernel (a) cumulative distribution function (CDF) figure. (b) probability density function (PDF) figure. (c) L1 and
L2 norm error rates under different truncation degree



Simple, Practical, and Fast Dynamic Truncation Kernel Multiplication

0 10 20 30 40 50 60 70 80
Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

pe
rc

en
ta

ge

(a)

0 10 20 30 40 50 60 70 80
Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

PD
F 

pe
rc

en
ta

ge
(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 7: Multiquadratic kernel (a) CDF figure. (b) PDF figure. (c) L1 and L2 norm error rates under different truncation degree

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

pe
rc

en
ta

ge

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 8: Inverse multiquadratic kernel (a) CDF figure. (b) PDF figure. (c) L1 and L2 norm error rates under different truncation degree

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.970

0.975

0.980

0.985

0.990

0.995

1.000

CD
F 

pe
rc

en
ta

ge

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Value

0.0

0.2

0.4

0.6

0.8

1.0

PD
F 

pe
rc

en
ta

ge

(b)

3.053.02.952.92.852.82.752.72.652.6
Truncation percentage(%)

0.1
0.2
0.3
0.4
0.5
0.6

Er
ro

r r
at

e

Error rate L1 norm
Error rate L2 norm

(c)

Figure 9: Rational kernel (a) CDF figure. (b) PDF figure. (c) L1 and L2 norm error rates under different truncation degree


	Introduction
	Related Work
	Our Data Structures
	Definitions
	Our Theorem
	Correctness of Query
	Correctness of Multiplication
	Running Time
	Running Time of Query
	Running Time of Multiplication


	Evaluation
	Conclusion
	Truncation Kernel Multiplication Algorithm
	Missing Proofs
	Correctness of Query
	Correctness of Multiplication
	Running Time

	Additional Evaluation Figures

