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Abstract

Neural Architecture Search (NAS) methodologies
aim at finding efficient Deep Neural Network
(DNN) models for a given application under given
system constraints. DNNs are compute-intensive
as well as vulnerable to adversarial attack threats.
To address multiple design objectives, we propose
HARNAS, a novel NAS framework that jointly
optimizes for hardware-efficiency and adversarial-
robustness of DNNs executed on specialized
hardware accelerators. Besides the traditional
convolutional DNNs, HARNAS extends the search
for complex types of DNNs such as Capsule
Networks. For reducing the exploration time,
HARNAS selects appropriate values of adversarial
perturbations to employ in the NAS algorithm.
Our evaluations provide a set of Pareto-optimal
solutions leveraging the tradeoffs between the
above-discussed design objectives.

1 Introduction

Among the Machine Learning models, Deep Neural
Networks (DNNs) have shown high performance in a wide
variety of applications (Capra et al., 2020)(Grigorescu et al.,
2019). Finding an efficient DNN architecture through
Neural Architecture Search (NAS) involves a huge number
of parameters and typically extremely long exploration
time (Pham et al., 2018). The search space becomes even
larger when employing NAS algorithms for advanced types
of DNNGs, such as the Capsule Networks (CapsNets) (Sabour
et al., 2017). However, these advancements in DNNs come
with multiple design challenges:

1. High computational complexity: ~ DNNs require
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specialized hardware accelerators to be deployed
and executed at the edge, where the resources are
constrained (Marchisio et al., 2019a).

2. Security: DNN models can be fooled by adversarial
attacks, which are small and imperceptible perturbations
added to the inputs (Shafique et al., 2020). The
adversarial robustness is a crucial feature for safety-
critical applications (Cheng et al., 2018). Furthermore,
integrating security properties during NAS is a
challenging, but can enable robust DNN designs (Dave
et al., 2022)(Shafique et al., 2021), as compared to the
regular DNN design flow.

Hence, the problem is: how fo design advanced DNNs in
an energy-efficient and robust way in an automated multi-
objective NAS flow?

1.1 Limitations of State-Of-The-Art and Scientific
Challenges

Traditionally, the hardware efficiency of a DNN
implemented on a given hardware accelerator is a metric
that is typically analyzed after the DNN design, thereby
challenging the feasibility of its implementation on resource-
constrained IoT devices. The growing interest in hardware
efficiency has led to designing Hardware-Aware NAS
methodologies (Sekanina, 2021). Also the adversarial
robustness of a given DNN is typically investigated once
the DNN is already designed. Including the DNN security
into the optimization goals of the NAS is a challenging
task, because it might lead to a massive search space
explosion due to additional factors and extremely time-
consuming training and evaluations of numerous candidate
solutions. A large pool of adversarial attacks have been
proposed in the literature (Yuan et al., 2019), and it is
extremely complex to evaluate the adversarial robustness
against different attack algorithms. The work in (Guo et al.,
2020) proposed a method evaluating the DNN robustness
to the PGD attack (Madry et al., 2018) as the optimization
goal of the NAS algorithm. On the contrary, our work
performs joint optimizations for the adversarial robustness
and hardware efficiency, thereby increasing the complexity
of the optimization problem and the training time for
evaluating the DNN robustness. Moreover, it is challenging
to model, implement and evaluate the execution on hardware
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Figure 1. Overview of our HARNAS framework.

devices of different DNN and CapsNet operations (including
convolutional layers, fully-connected layers, capsule layers,
and dynamic routing) in the NAS design flow.

1.2 Our Novel Contributions

To address the aforementioned challenges, we propose the
novel HARNAS framework (see Figure 1) that integrates
multiple optimization objectives, such as hardware
efficiency and adversarial robustness, for advanced types of
DNNs and CapsNets. HARNAS employs the following key
mechanisms:

1. To achieve architectural model flexibility and fast
hardware estimation, we deploy analytical models of the
layers and operations of DNNs and CapsNets, as well as
their mapping and execution on specialized accelerators.

2. For speeding-up the robustness evaluation, we analyze
and choose the values of the adversarial perturbations
that provide valuable differences when performing
the NAS with DNNs subjected to such adversarial
perturbations.

3. We develop a specialized evolutionary algorithm, based
on the principles of the NSGA-II method (Deb et al.,
2002), to perform a multi-objective Pareto-frontier
selection, with conjoint optimization for adversarial
robustness, energy, memory, and latency of DNNGs.

4. To reduce the overall training time, we devise a fast
evaluation methodology for DNNSs trained for a limited
number of epochs, while the Pareto-optimal solutions are
evaluated after full-training, to obtain the exact results.

We have implemented our HARNAS framework using the
TensorFlow library (Abadi et al., 2016), and explored more
than 900 DNNs for the MNIST and CIFAR10 datasets. The
evaluations are performed on multiple Nvidia V100 GPUs
requiring weeks to months of experimentation time.

2 HARNAS Framework

Our evolutionary algorithm-based NAS framework performs
a multi-objective search. It searches for inherently robust
yet hardware-efficient DNN models by selecting Pareto-
optimal candidates in terms of adversarial robustness,
energy, latency, and memory footprint. The search space
comprises both CNNs and CapsNets. The workflow of our
HARNAS framework is shown in Figure 2.

The inputs are the hardware accelerator, the adversarial
attack algorithm, and the dataset.  After modeling
analytically the hardware architecture and selecting the
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Figure 2. Our HARNAS framework and its key functionalities.

values of the adversarial perturbation to employ in
the search, the evolutionary algorithm (based on the
principles of the NGSA-II genetic algorithm (Deb et al.,
2002)) performs an iterative exploration through crossover,
mutation, and best DNN candidate selection based on the
objectives. To speed up the search, during the evolutionary
algorithm, the adversarial robustness is evaluated after
training the DNNs with a limited number of epochs, where
its number is chosen based on the Pearson Correlation
Coefficient (Pearson, 1895). For evaluating the exact
robustness results, the set of Pareto-optimal DNN models
are fully-trained before measuring their robustness.

2.1 Layer and Operation Modeling

The HARNAS framework models each layer through a
layer descriptor, which contains all the parameters for
describing the type and sizes of a DNN layer. Any
CNN or CapsNet model can be described through multiple
layer descriptors, together with information on extra skip
connections and resizing of the inputs. To estimate the
execution requirements of a DNN model on a specialized
DNN hardware accelerator (e.g., CapsAcc (Marchisio et al.,
2019b) or TPU (Jouppi et al., 2017)), its underlying
hardware characteristics, such as the clock period, the
power consumed by the Processing Element (PE) array, the
energy consumption and latency required for the memory
accessed, etc., must be known. The overall latency, energy
consumption, and memory footprint of a DNN model can
be computed analytically with the equations in (Marchisio
et al., 2020).

2.2 Adversarial Perturbation Value Selection

Since the design space can potentially explode by
considering several types and strengths of adversarial
noise, the HARNAS framework restricts the design space
by automatically choosing the values of adversarial
perturbations to be employed in the NAS for a given dataset.
For each element of the testing dataset, the adversarial
example is generated through the PGD algorithm (Madry
et al., 2018). Note, here we use the PGD in the discussion,
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while other adversarial attack algorithms can be integrated
into our HARNAS framework. When considering the
variation of the accuracy w.r.t. the amount of adversarial
perturbation (g), the region in which the slope is highest
corresponds to half of the clean accuracy, i.e., %
By exploiting this intuition, we select exag, which is
the value of adversarial perturbation that provides the
closest accuracy to the desired value, which is Ach. The
selected value of cxn45 is employed in the One EPS
search, which optimizes for the robustness against one
value of perturbation. Moreover, aiming at covering a wider
spectrum of adversarial perturbation ranges, the Two EPS
search is devised. €15, ~ 61{85 and epign = 3 - Enag are
computed, and the NAS is conducted by optimizing for the
adversarial accuracy with both values.

3 Evaluation of the HARNAS Framework

3.1 Experimental Setup

The tool flow used to implement the HARNAS framework
and conducting the experiments is summarized as
follows. The PGD adversarial attack (Madry et al.,
2018) has been implemented with the CleverHans
library (Goodfellow et al., 2016). The hardware
architecture model has been implemented with the
NASCaps library (Marchisio et al., 2020), which is
based on the CapsAcc architecture (Marchisio et al.,
2019b) synthesized in a 45nm technology node and
with a clock period of 3ns using the Synopsys Design
Compiler. The DNN training and testing, implemented in
TensorFlow (Abadi et al., 2016) have been running on high-
end GPU computing nodes equipped with four NVIDIA
Tesla V100-SXM2 GPUs. Note that, our experiments
were running for 2,000 GPU hours with our fast evaluation
method and 8,000 GPU hours for the final training and PGD
attack evaluation. Without such exploration time reductions,
or by considering more complex optimization problems
(e.g., larger datasets or deeper DNN models), the exploration
time would have lasted several GPU months.

3.2 Selection of Adversarial Perturbation for the NAS

Following the procedure described in Section 2.2, the Pareto-
optimal DNNs of the NASCaps library (Marchisio et al.,
2020) have been tested under the PGD attack (Madry et al.,
2018), with different values of the adversarial perturbation &.
The results in Fig. 3 show that, as expected, the higher
¢ is, the lower the DNNs’ accuracy drops. The selected
values for the NAS are reported in Table 1. The One EPS
column refers to the search using a single value of ¢, while
the Tiwo EPS column refer to a search conducted with two
different values of e, which are €;4,, and ep;45. Note, a
simple dataset like the MNIST requires a relatively high
adversarial perturbation to impact the DNN robustness. On
the other hand, on a more complex task like the CIFAR10
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Figure 3. Analysis of the DNN robustness under the PGD attack,
with different adversarial perturbation values, for the MNIST and
CIFARI10 datasets.

Table 1. Selected values of the adversarial perturbation ¢ for the
NAS, for the MNIST and CIFARI10 datasets. There are also
reported the values of €;,,, and enign for the Tiwo EPS search,
which will be used for comparison in Section 3.4.
‘ Two EPS €00 ‘ One EPS ¢ ‘ Two EPS epign
MNIST ‘ 3e-3 ‘ 3e-2 ‘ le-1

CIFARI10 3e-5 3e-4 le-3

classification, a smaller perturbation is already sufficient to
misclassify a certain set of inputs.

3.3 HARNAS Results with Fast DNN Robustness
Evaluation

To reduce the exploration time, our search algorithm
trains the DNNs only for a limited number of epochs.
The robustness similarity w.r.t. the full-training
has been measured through the Pearson Correlation
Coefficient (Pearson, 1895), using the methodology
described in (Marchisio et al., 2020). The choice of 10
training epochs for the CIFARI10 dataset and 5 epochs
for the MNIST dataset leverages the tradeoff between low
training time and high correlation.

The results of the HARNAS - One EPS with fast robustness
evaluation are shown in Fig. 4. The earliest generation of the
algorithm produces sub-optimal DNN solutions, while most
Pareto-optimal solutions are found in the latest generation.
Note that, for the HARNAS evaluated on the CIFAR10
dataset, the latest generations find DNNSs that are less robust
to the PGD attack, but still belong to the Pareto-frontier due
to the low energy consumption (see pointer (1)). Moreover,
as highlighted by pointer (2), several candidate DNNs found
in the earliest generations are automatically discarded by the
Pareto-frontier selection, since they are highly vulnerable to
the PGD attack.

3.4 HARNAS Exact Results for Pareto-Optimal DNNs

The Pareto-optimal DNNs selected at the previous stage
have been fully-trained to evaluate their exact robustness.
The DNNs for the MNIST and dataset have been trained
for 100 epochs, while the DNNs for the CIFAR10 dataset
have been trained for 300 epochs. The results reported
in Fig. 5 show tradeoffs between the design objectives.
As highlighted by pointer (1) in Fig. 5, a Pareto-optimal
solution found by the HARNAS framework for the CIFAR10
dataset achieves 86.07% accuracy while having an energy
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Figure 4. HARNAS’ fast evaluation of DNN robustness under PGD
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footprint. (a) Results for CIFAR10. (b) Results for MNIST.
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Figure 5. HARNAS’ exact robustness evaluation of Pareto-optimal
DNNs under the PGD attack, showing tradeoffs w.r.t. hardware-
efficiency. (a) Results for CIFAR10. (b) Results for MNIST.

consumption of 38.63 mJ, a memory footprint of 11.85 MiB,
and a latency of 4.47 ms. Similarly, the Pareto-optimal DNN
search for MNIST covers a wider range of values, leveraging
tradeoffs between different objectives (see pointer (2)).

The HARNAS framework has been compared with other
state-of-the-art DNN and CapsNet architectures, and NAS
methodologies that include CapsNets in the search space.
Fig. 6 shows the comparison between our HARNAS
framework (One EPS setting), NASCaps (Marchisio
et al., 2020), CapsNet (Sabour et al., 2017) and
DeepCaps (Rajasegaran et al., 2019). For the MNIST
dataset, the Pareto-optimal solutions obtained with the
HARNAS framework are particularly robust for a high range
of perturbation ¢ (see pointer (1)). Indeed, the accuracy
starts dropping at around one order of magnitude higher
than NASCaps (see pointer (2)). For the CIFAR10 dataset,
the HARNAS DNNs’ behavior is similar to the DeepCaps
for low values of ¢ (see pointer (3)), while a Pareto-optimal
HARNAS solution offer a respectable robustness also with
higher adversarial perturbation (see pointer (3)).

The evaluation of the HARNAS framework with the Two
EPS setting is shown in Fig. 7. Compared to the One EPS
setting, the NAS produces different levels of robustness w.t.r.
¢ for the MNIST dataset (see pointer (1) in Fig. 7). However,
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Figure 6. Evaluation of the HARNAS framework with the One EPS
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—_

for the CIFAR10 dataset, the Tiwo EPS search leads to worse
results than the One EPS counterpart (see pointer (2)).

4 Conclusion

In this paper, we proposed HARNAS, a novel framework for
the Neural Architecture Search, jointly optimizing for the
hardware efficiency (energy, latency, and memory footprint)
and adversarial robustness. Our optimizations reduce the
search space and the exploration time. Hence our HARNAS
framework finds a set of CNNs and CapsNets, which
are Pareto-optimal w.r.t. the above-discussed objectives,
in a fast fashion. Thanks to our HARNAS framework,
the deployment of robust DNNs in resource-constrained
IoT/edge devices is made possible.
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