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Abstract
Sparse neural networks have various computa-
tional benefits while often being able to main-
tain or improve the generalization performance
of their dense counterparts. Popular sparsifica-
tion methods have focused on what to sparsify,
i.e. which redundant components to remove from
neural networks, while when to sparsify, has re-
ceived less attention and is usually handled us-
ing heuristics or simple schedules. In this work,
we focus on learning sparsity schedules from
scratch using reinforcement learning. In simple
CNNs and ResNet-18, we show that our learned
schedules are diverse across layers and training
steps, while achieving competitive performance
when compared to naive handcrafted schedules.
Our methodology is general-purpose and can be
applied to learning effective sparsity schedules
across any pruning implementation.

1. Introduction
Overparameterized models have led to many breakthroughs
in machine learning (Chowdhery et al., 2022; Brown et al.,
2020; Zhai et al., 2021; Reed et al., 2022). However, even
with this success, the growth in parameter counts – at times
exceeding billions of parameters – present many challenges.
These challenges include efficient storage, inference and
training of large models. One of the most common methods
to handle some the challenges of these models is pruning.

Pruning aims to remove unnecessary components (weights,
neurons, whole layers etc.) in neural networks (LeCun et al.,
1989). When designing a pruning algorithm, two important
questions arise: (1) what to prune (the pruning criteria) and
(2) when to prune (the pruning schedule). Pruning criteria
focuses on identifying which redundant elements to remove
from a network, while pruning schedules focus on what
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stages of a network’s lifecycle to introduce and remove
components.

Pruning methods can introduce sparsity at various periods.
Some methods prune once, such as SNIP (Lee et al., 2018)
which prunes once at initialization (pruning from scratch or
static sparse training), other methods follow a training, prun-
ing, and fine-tuning cycle (Liu et al., 2018) (post-training
pruning), while other methods prune and possibly regrow
weights during training (dynamic sparsity during training),
such as Sparse Evolutionary Training (SET) (Mocanu et al.,
2018). Post-training pruning methods have a high computa-
tional cost because they require training an overparameter-
ized dense model first, while pruning from scratch methods
have shown promise, but have been outperformed by dy-
namic sparsity methods such as Rigging the Lottery (RigL)
(Evci et al., 2020).

Even with the potential for better performance, dynamic
sparsity methods pose some challenges. Since these meth-
ods grow and prune during training, as opposed to just
before or after training, their pruning schedules become
difficult to calibrate. These methods require decisions about
when to start and stop pruning, the number of iterations
between pruning, and the rate or function at which pruning
changes over time. Furthermore, all of these hyperparam-
eter choices have to be made at a layerwise level. The
vast possibilities for these hyperparameters have resulted
in most dynamic sparsity methods using simple schedules
uniformly across all layers (Zhu & Gupta, 2017). This is
not ideal since the dynamics across layers could be different
and this choice of uniform schedules could be limiting the
method’s performance.

Not all dynamic sparsity methods apply sparsity uniformly
across layers, various heuristics have been developed. SET
(Mocanu et al., 2018) uses an Erdős Rènyi (ER) random
graph, which scales the number of active weights according
to the number of neurons. ER was adapted to Erdős Rènyi-
Kernel (ERK) ratios by (Evci et al., 2020), to work better
with Convolutional Neural Networks (CNNs). Su et al.
(2020) used predefined heuristics and schedules such as
decaying density ratios as a function of network depth, while
Gale et al. (2019) leave the first and final layer dense.

For determining the pruning schedule (change in sparsity),
most dynamic sparsity methods use a function parameter-
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ized by training steps. SET (Mocanu et al., 2018), Deep
Rewiring (DeepR) (Bellec et al., 2017) and Neural Network
Synthesis Tool (NEST) (Dai et al., 2019) use a constant spar-
sity schedule. RigL (Evci et al., 2020) and Sparse Network
From Scratch (SNFS) (Dettmers & Zettlemoyer, 2019) use
a cosine annealing schedule, while Zhu & Gupta (2017);
Mostafa & Wang (2019) use a cubic schedule.

There are also methods which aim to learn the sparsity
schedule as opposed to using heuristics or a predefined
function. Dynamic Sparse Training (DST) (Liu et al., 2020)
proposes adapting the layerwise pruning schedule by using
a notion of parameter importance and a hyperparameter
α, which is a scaling coefficient for a regularization term.
Kusupati et al. (2020) use the soft-threshold version of a
weight tensor and construct the loss as a function of the
layer sparsity and learn this sparsity via backpropagation.
Although these methods have been able to learn layerwise
pruning schedules, these schedules are not general. They
can only be learned for the method they were designed
for since they rely on modified formulations of weights or
handcrafted notions of parameter importance.

In this work, we focus on learning these sparsity schedules
from scratch using reinforcement learning (RL). Our agent
learns to take actions that alter the sparsity level of layers in a
network, while observing the changes in the dynamics of the
networks and leveraging holdout accuracy as a reward signal.
Contrary to other learned approaches, such as DST (Liu
et al., 2020) and (Kusupati et al., 2020), our methodology is
general-purpose and can be applied to any pruning method.

Our results shows that our RL agent is able to learn diverse
and well-performing learning schedules in a flexible manner.
These schedules are diverse across training steps and layers
in a network, and often leads to better test accuracy than
commonly used handcrafted schedules like linear, quadratic,
cubic, cosine, and constant schedules.

2. Learning Dynamic Sparsity Schedules
Reinforcement learning (RL) has been shown to be promis-
ing at solving complex tasks, in a wide variety of domains.
The goal of an RL agent is to learn from interactions with
an environment, by using trial-and-error. The agent takes
in observations from its environment and uses these obser-
vations to select actions in order to maximize a numerical
reward signal.

In our application, the agent learns the sparsity schedules for
the different layers in a network, across timesteps. This is
shown in Figure 1. This formulation is convenient because
our agent can learn sparsity schedules across any network
and pruning method.

Figure 1: The Reinforcement Learning (RL) flow for Learn-
ing Sparsity Schedules

2.1. Observations, Rewards and Actions

Observation For our observations, we use the previous ac-
tion At−1 (previous sparsity schedule), the density for each
layer D, the loss and accuracy (validation loss and accuracy
during training, test loss and accuracy during evaluation).
We use both At−1 and D because At−1 ̸= D, since even if
our agent allows a certain density for a layer by defining the
possible active weights through a mask, the density in that
layer could be lower because of the possible propagation of
dead gradients. We also explored other observations related
to network dynamics such as the mean and variance of the
weights and their gradients in each layer, but these provided
no performance benefit, while at times making it harder for
our agents to learn.

Reward For our reward, during training, we use validation
accuracy. This is computed every ∆T steps (e.g. every
100 steps) and provides dense rewards to our agent after
an action has been taken. During evaluation, where we
simply measure the performance of our agent, we record
test accuracy.

Action At each pruning step (every ∆T steps), our agent
takes actions that updates the sparsity schedule of each layer
in a network. The actions at step t are described as follows:

At = (d1, d2, ..., dL), (1)

where L is the number of layers. For every layer l, our
density for that layer, dl, corresponds to the percentage of
possible active weights in layer l, that is to say, the mask
applied to layer l, ml has dl percentage of active weights
compared to a dense/fully-connected layer. Every layer’s
density is bound by the minimum (min d) and maximum
density (max d) in that layer — dl ∈ [min dl,max dl].
This formulation allows for the learning of non-uniform
layerwise sparsity schedules.
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Table 1: Test Accuracy (mean and standard deviation) of different schedules on
CIFAR-10, using Simple-CNN.

Target Density (%) Schedule Random Pruning with
Random Regrowth (RP-RR)

Magnitude Pruning with
Random Regrowth (MP-RR)

10 Linear 20.365 +- 17.952 60.418 +- 1.362
Quadratic 23.15 +- 20.043 61.259 +- 1.485
Cubic 33.721 +- 21.693 60.396 +- 0.832
Cosine 18.302 +- 14.379 59.807 +- 0.384
Constant 61.475 +- 0.731 62.536 +- 0.314
Learned (Ours) 61.071 +- 1.574 63.191 +- 0.810

50 Linear 64.54 +- 0.477 64.78 +- 0.464
Quadratic 64.987 +- 0.86 63.933 +- 0.431
Cubic 65.31 +- 0.49 64.315 +- 0.437
Cosine 64.672 +- 0.771 64.737 +- 0.345
Constant 65.1 +- 0.283 65.388 +- 0.375
Learned (Ours) 65.655 +- 0.515 65.686 +- 0.284

100 Linear 66.228 +- 0.691 66.711 +- 0.423
Quadratic 66.947 +- 0.749 67.25 +- 0.578
Cubic 66.857 +- 0.627 67.395 +- 0.547
Cosine 66.074 +- 0.282 66.18 +- 1.027
Full Dense 67.815 +- 0.146 67.878 +- 0.482
Learned (Ours) 67.534 +- 0.174 67.908 +- 0.162

Table 2: Test Accuracy (mean
and standard deviation) of dif-
ferent schedules on CIFAR-
10, using Resnet-18 with 100%
Target Density.

Schedule Test Accuracy

Linear 75.611 +- 0.588
Quadratic 76.445 +- 0.248
Cubic 76.588 +- 0.51
Cosine 75.593 +- 0.457
Constant (Fully Dense) 77.631 +- 0.346

Learned (Ours) 78.398 +- 0.164

2.2. PPO Agent

We use Proximal Policy Optimization (PPO) (Schulman
et al., 2017) to learn these sparsity schedules. PPO is a
sample-efficient policy gradient algorithm, that aims to sta-
bilize training by ensuring policy (agent controller) updates
are not too large. Our agent is implemented using acme
(Hoffman et al., 2020), a distributed reinforcement learning
framework.

3. Experimental Results
3.1. Experimental Setting

We evaluate our proposed method on CIFAR-10
(Krizhevsky et al., 2009). We use a train-val-test split of 45
000, 5 000 and 10 000 images respectively. During train-
ing, our agent uses the validation accuracy as a reward and
never sees the test set (which we only use to evaluate how
well our model is performing). We evaluate our approach
on two network architectures – a Simple-CNN, with three
convolutional layers (each followed by a max pooling layer)
and two dense layers; and ResNet18 (He et al., 2016). All
hyperparameters are presented in Appendix A.

We learn schedules for two pruning methods:

1. Random Pruning, with Random Regrowth (RP-RR) :
A naive, yet effective pruning method (Gale et al., 2019; Lee
et al., 2018; Frankle et al., 2020; Su et al., 2020; Liu et al.,
2022), where weights are randomly pruned and added.

2. Magnitude Pruning, with Random Regrowth (MP-
RR) : A pruning method where during pruning, the smallest
weights are removed, and during regrowth, new weights are
randomly added. This can be thought of as a generalized
version of SET (Mocanu et al., 2018) that doesn’t rely on
an Erdős–Rényi random graph initialization and with a cus-

tom or learned pruning schedule as opposed to a constant
schedule.

These simple pruning methods are used because they are
closely related to a variety of common pruning implementa-
tions and can be used to learn about these implementations
in their simplest form.

3.2. Learning Schedules in Shallow Networks

Using our Simple-CNN network, we compare the schedules
learned by our PPO agent against common adaptive sparsity
schedules, namely linear, quadratic, cubic, and cosine, while
also comparing our schedules to a constant schedule. For
the common schedules, we use uniform sparsity across the
layers.

We compare these schedules at different target densities –
10% dense, 50% dense and 100% (fully) dense. For the
predefined schedules, the target density is the final density
and we use an initial density equal to half of the final density
(not too low as to hurt performance - see illustration in
Figure 2a). For our learned schedule, the maximum density
for each layer is equal to the target density and the minimum
density is equal to 1% dense.

3.2.1. LEARNED SCHEDULES ARE COMPETITIVE

From Table 1, we see that across various densities, in Ran-
dom Pruning with Random Regrowth (RP-RR) and Magni-
tude Pruning with Random Regrowth (MP-RR), our learned
schedules are competitive.
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Figure 2: Different Schedules at 50% Target Density

(a) Common Sparsity Schedules (b) Learned - RP-RR (c) Learned - MP-RR

3.2.2. RANDOM PRUNING IS MORE SENSITIVE TO
PRUNING SCHEDULE THAN MAGNITUDE
PRUNING

In RP-RR, a constant schedule is a strong baseline, often
outperforming all adaptive schedules. This is especially
apparent at a density of 10% (high sparsity). This suggests
that at low parameter counts and naive pruning (RR-RR),
that it is better to keep a consistent pruning schedule. Of
the adaptive schedules, our learned schedule performs better
than other adaptive schedules (linear, quadratic, cubic and
cosine), while being comparable or slightly worse than a
constant schedule.

For MP-RR, we see that our learned schedules consistantly
outperforms all other schedules. We also see that in MP-RR,
even at low densities, adaptive schedules are competitive to
a constant schedule, unlike RP-RR. This hints at MP-RR
being less sensitive to pruning schedules than RP-RR.

3.2.3. THE LEARNED SCHEDULES ARE DIVERSE

From Figures 2b and 2c, we see that the learned schedules
are diverse across layers and different pruning methods.

In Naive Pruning, a Piecewise Constant Schedule is Com-
petitive When random pruning is used, in Figure 2b, we see
that most layers (conv1, conv2 and linear1) follow
a piecewise constant function, where the density level is
chosen early and kept constant, with layer linear1 ef-
fectively being removed completely. This learned schedule
agrees with (Gale et al., 2019), who note that for random
pruning, it is better to start and end the pruning early and
train with the fixed sparse mask.

When magnitude pruning is used, Figure 2c, we see a wide
variety of layer schedules, with some layers growing con-
nections (layer conv2 and conv3), some layers pruning
over time (layer conv1 and linear2), and some layers
being made redundant such as layer linear1 (similarly to
RP-RR).

Schedules Should be Learned and Non-Uniform The
diversity of these schedules imply that they should rather be

learned as these would be difficult and costly to handcraft
per layer, timestep and pruning method.

3.3. Learning Schedules in ResNet-18

We also explore learning sparsity schedules in larger net-
works, specifically ResNet-18. We compare our learned
schedules to common sparsity schedules with a target den-
sity of 100%.

From Table 2, we see that our methodology can still learn
well-performing schedules in deeper networks. Furthermore,
the learned schedules outperform other schedules and even
outperform a fully dense network, with only 67% of its
weights. The performance benefit of learning a custom
schedule is more apparent in ResNet-18 than in Simple-
CNN, implying that custom schedules are more relevant for
deeper, more complicated networks.

4. Conclusions, Limitations and Future
Directions

In this work, we demonstrate that it is possible to learn well-
performing dynamic sparsity schedules using reinforcement
learning. The schedules learned are not arbitrary and are
distinct per layer and pruning method. The results show that
appropriate pruning schedules can help improve the perfor-
mance of pruning algorithms and thereby motivates learning
optimal schedules per method using a similar approach to
the one presented in this paper.

Even with the success of these results, there are certain
limitations to our approach. Our method is computationally
intensive, at times taking 25-50 episodes (25-50 times the
standard amount of training) to converge to optimal sparsity
schedules. We envision future work being able to improve
the speed of learning by finding better representations of
the observations and exploring different policy architectures
and reward formulations. Finally, we also believe being able
to generalize across architectures and datasets would vastly
improve the efficiency of our approach (e.g. we train on
CIFAR-10 and generalize to ImageNet (Deng et al., 2009)).
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A. Hyperparameters

Table 3: Pruning

Hyperparamter Configuration

∆T 100
min density: 0.01
max density: 1.0
num epochs: 100

Table 4: Optimizer

Hyperparamter Configuration

Optimizer Stochastic Gradient Descent (SGD)
Learning Rate 0.01
Momentum 0.9

Table 5: Dataset

Hyperparamter Configuration

Train Batch Size 128
Test Batch Size 250
Data Augmentation None (Simple-CNN), Random Crop & Random Flip (ResNet-18)
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Table 6: PPO Agent

Hyperparamter Configuration

unroll length: 1
num minibatches: 1
num epochs: 1
batch size: 64
clip value: False
ppo clipping epsilon: 0.2
gae lambda: 0.95
discount: 0.99
learning rate: 1e-3
adam epsilon: 1e-5
entropy cost: 0.01
value cost: 1.
max gradient norm: 0.5
prefetch size: 4
variable update period: 1


