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Abstract

With the latest advances in deep learning, several
methods have been investigated for optimal
learning settings in scenarios where the data
stream is continuous over time. However, training
sparse networks in such settings has often been
overlooked. In this paper, we explore the problem
of training a neural network with a target sparsity
in a particular case of online learning: the anytime
learning at macroscale paradigm (ALMA). We
propose a novel way of progressive pruning, re-
ferred to as Anytime Progressive Pruning (APP);
the proposed approach significantly outperforms
the baseline dense and Anytime OSP models
across multiple architectures and datasets under
short, moderate, and long-sequence training. Our
method, for example, shows an improvement
in accuracy of &~ 7% and a reduction in the
generalisation gap by =~ 22%, while being
~ 1/3 rd the size of the dense baseline model in
few-shot restricted imagenet training. The code
and experiment dashboards can be accessed at
https://github.com/landskape—-ai/
Progressive-Pruning and https:
//wandb.ai/landskape/APP, respec-
tively.

1. Introduction

Supervised learning has been one of the most well-studied
learning frameworks for deep neural networks, where the
learner is provided with a dataset D, , of samples(x) and
corresponding labels(y); and the learner is expected to pre-
dict the label y by learning on z usually by estimating
p(y|z). In an offline learning environment (Ben-David et al.,
1997), the learner has access to the complete dataset Dy, ,,,
while in a standard online learning setting (Sahoo et al.,
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Figure 1: Non-Monotonic Transition: generalisation gap
as a function of the number of megabatches (|Sg| = 100)
in the long-sequence ALMA setting with full replay for
ResNet-50 backbone on the CIFAR-10 dataset.

2017; Bottou et al., 1998) the data arrive in a stream over
time, assuming that the rate at which samples arrive is the
same as that of the learner’s processing time to learn from
them. There are several fine-grained types of learning from
a stream of data, including, but not limited to, continual
learning (Van de Ven & Tolias, 2019; Thrun, 1995; Ring,
1998), active online learning (Baram et al., 2004; Settles,
2009), and anytime learning (Grefenstette & Ramsey, 1992;
Ramsey & Grefenstette, 1994). In an anytime learning
framework, the learner has to have good performance at any
point in time, while gradually improving its performance
over time upon observing new data that subsequently arrive.

In this work, we are interested in exploring the training of
sparse neural networks (pruned) in the ALMA setting (Cac-
cia et al., 2021). Pruning (Blalock et al., 2020; Luo et al.,
2017; Wang et al., 2021) of over-parameterized deep neural
networks has been studied for a long time. Pruning deep
neural networks leads to a reduction in inference time and
memory footprint. Although early pruning work focused
exclusively on pruning weights after pre-training the dense
model for a certain number of iterations, extensive research
has recently been conducted on pruning the model at initial-
ization, that is, finding the lottery ticket (Frankle & Carbin,
2018; Frankle et al., 2019a;b; Malach et al., 2020) from
a dense model at the start without pre-training the dense
model (Lee et al., 2018; Wang et al., 2020a). However,
few studies (Chen et al., 2020) have investigated training
of sparse neural networks (pruned) in online settings. Thus,
our objective is to answer the following question:

“Given a dense neural network and a target sparsity, what
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should be the optimal way of pruning the model in ALMA
setting ?”

In summary, our contributions can be summarized by the
following two points.

* We provide the first comprehensive study of deep neu-
ral network pruning in the ALMA setting; henceforth
to this extent, we propose a novel approach of pro-
gressive pruning which we term Anytime Progressive
Pruning(APP).

* We further investigate the APP training dynamics com-
pared to baselines in the ALMA setting with a varied
number of megabatches using C-10, C-100!, and Re-
stricted ImageNet datasets.

2. Related Work
2.1. Pruning

Pruning (LeCun et al., 1990; Han et al., 2015a) as one of the
effective model compression techniques is widely explored
in the field of efficient machine learning. It trims down the
parameter redundancy in modern over-parameterized deep
neural networks, aiming at substantial resource savings and
unimpaired performance. Depending on the granularity of
the removed network components, classical pruning meth-
ods can be categorized into unstructured (Han et al., 2015a;
LeCun et al., 1990; Han et al., 2015b) and structural prun-
ing (Liu et al., 2017; Zhou et al., 2016), where the former
removes parameters irregularly and the latter discards sub-
structures such as convolution filters or layers. In addition
to the above post-training pruning, it can also be flexibly
applied before network training, such as SNIP (Lee et al.,
2019), GraSP (Wang et al., 2020b) and SynFlow (Tanaka
et al., 2020) or during training (Zhang et al., 2018; He et al.,
2017).

Recent closely related work (Chen et al., 2021) defines prun-
ing in sequential learning as a dynamical system and pro-
poses two effective lifelong pruning algorithms to identify
high-quality subnets, leading to superior trade-offs between
efficiency and lifelong learning performance. Furthermore,
(Golkar et al., 2019) prunes neurons with low activity and
(Sokar et al., 2020) compresses the sparse connections of
each task during training to overcome the problem of forget-
ting.

2.2. Revisiting ALMA

In this section, we revisit the ALMA learning framework as
conceptualized in (Caccia et al., 2021). In ALMA, the model
fo is provided with a stream of Sp of |Sg| consecutive
batches of samples under the assumption that there exists

'C-10 and C-100 denote CIFAR-10 and 100 respectively.

an underlying data distribution D, , with input = € R? and
target labels y € {1, ..., C'}. Each megabatch M, consists
of N > 0i.i.d. samples randomly drawn from D, ,, for
t € {1,...,Sp}. Therefore, the stream Sp is the ordered
sequence Sp = {Mi,...., M|g,|} where |Sp| represents
the total number of megabatches in the stream. Thus, the
model fy : R? — {1, ..., C} is trained by processing a mini-
batch of n < N samples at a specified time of each mega-
batch M, and iterating multiple times over each mega-batch
before having access to the next mega-batch. In ALMA, it is
assumed that the rate at which megabatches arrive is slower
than the training time of the model on each megabatch and,
therefore, the model can iterate over the megabatches at its
disposal based on its discretion to maximize performance.

In ALMA, the authors conducted a conclusive study using
different baselines, two of them being (a) ensemble and
(b) dynamic growing. In both cases, the complexity of
the model parameters was gradually increased to allocate
sufficient capacity to accommodate the newly arrived mega-
batches. However, in this paper, we investigate the effect of
progressively decreasing the parametric complexity of the
model via pruning and subsequently training a sparse neural
network in an ALMA setting.

3. Anytime Progressive Pruning

In this section, we formally introduce our proposed method
Anytime Progressive Pruning(APP) as defined in the algo-
rithm 1. For each megabatch M; € Sg, we construct the
replay inclusive megabatch M by taking the union of all
previous megabatches along with the current megabatch and
then create a small sample set 7 of size 0.2 * | M| to be
used to prune the model to 0.8% x 100% sparsity. Here, 6,
is obtained from a predetermined list § of uniformly spaced
values that denote the target sparsity levels for each mega-
batch in the stream Sp. After pruning the model, we train it
on the M; megabatch and evaluate it on a held-out test set.

Algorithm 1 Training APP in the ALMA setting

Require: f;=", 7, Sp <= {M1, ... M|s,}
I: t+1
2: § « {start = 1,end = 7, steps = |Sg|}
3: whilet < |Sp| do
4 SNIP set(m,) « 0
t
5: My U M;

i=1

6:  pruning state < 0.8%

7 SNIP set « m, C M, | “Lﬁjl —02

8  f} < SNIP(f;~', SNIP set, pruning state)
9:  fi.train(My)

10: end while

To evaluate APP, we use primarily 2 baselines:
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1. Baseline: This denotes the model at full parametric
capacity trained and fine-tuned on all megabatches in
the stream Sp using stochastic gradient descent in an
ALMA setting.

2. Anytime OSP: This denotes one-shot pruning (OSP) to
the target sparsity 0.87 x 100% at the initialization of
fo and then subsequently training on all mega-batches
in the stream Sp in an ALMA setting. Thus, Anytime
OSP models have the lowest parametric complexity
since the start of training on the first megabatch in the
stream Sp. We use the same pruner of choice (SNIP)
by default for both APP and Anytime OSP. Similarly to
APP, we prune the model at initialization using a small
randomly selected subset 77 of the first megabatch M,
of size 0.2 % |M].

+* Cumulative Error Rate (CER): Along with test ac-
curacy, we use CER to evaluate the methods described
above, which can be defined by the following equation.

Sp |Ta,yl

CER=Y"Y" 1(Fi(x;) #y)) (1)

t=1 j=1

Here, T, , represents the held-out test set used for
evaluation, J; represents the trained model at the ¢ -th
megabatch, and F;(x;) represents the prediction on
the j-th index sample of the test set T, , compared
to the true label for that sample y;. CER provides
strong information on whether the learner is a good
anytime learner, as it is expected to minimize CER at
each megabatch training in the stream Sp.

In addition, we also note the generalisation gap as the differ-
ence between the training and the validation accuracy. This
gives a notion of whether the model is over- or under-fitting.

3.1. Results
3.1.1. SHORT SEQUENCE ALMA (|Sg| = 8)

We start by analyzing the results shown in Fig. 2. Each
megabatch M, consists of 6250 samples and the target spar-
sity was set to 7 = 4.5.

For all models, we observed a strong performance improve-
ment for APP compared to baseline and Anytime OSP in all
metrics: test accuracy, CER, and generalisation gap. For ex-
ample, with ResNet-50 (R50) in C-100, APP improved the
test accuracy by 17.97% and 11.12%, reduced CER by 9927
and 5533 and decreased the generalisation gap by 20.49%
and 14.79% compared to baseline and Anytime OSP. For
C-10, we use a noncyclic step decay learning rate policy
which reduces the learning rate only for the first megabatch
(M) and subsequently stays constant for all remaining

megabatches. However, for C-100, we used a cyclic step
decay learning rate policy, where the learning rate resets
to it’s initial value when starting on a new megabatch. In
Fig. 2, we show the results for using magnitude and random
pruning instead of SNIP for APP and, based on the observa-
tions, we make SNIP the default pruner of choice due to its
stability and strong performance.
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Figure 2: Top and Bottom Rows: L—R Test Accuracy(?),
CER(/) and Generalisation Gap(|) results for C-10 and C-
100, respectively. A, +, X, x and X represent the baseline,
Anytime OSP, APP (Snip), APP (Magnitude), and APP
(Random), respectively.

3.1.2. MODERATE AND LONG SEQUENCE ALMA
(|SB| = 25, 50,100)
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Figure 3: Change in CER during training of APP,
and Baseline using a ResNet-50 on C-10 as a function
of megabatches(|Sg|).

Similarly to short-sequence-based ALMA, we observed
a strong improvement in performance while using APP
compared to the Anytime OSP and baseline models. In
particular, when |Sg| = 100, where each megabatch has
| M| = 500 samples, we report an improvement in CER by
105277 compared to the baseline model, which is equivalent
to APP correctly classifying the test set T, ,, of 10,000 sam-
ples 10 times compared to the baseline model throughout
the training process on the complete stream |Sp|. Interest-
ingly, as reported in Table 1, we find that the performance
of the baseline has a high variation caused by the change in
|Sp| with a deviation in test accuracy of o = 4.95%, while
APP is extremely stable and is less sensitive to the change in
|Sp| with a deviation in test accuracy of o = 1.15% across
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Table 1: Results on C-10 ALMA with varying |Sg]|.

Method |Sg| |M;| Test Accuracy(T) CER () Generalisation Gap(|)
Baseline 25 2000 82.69 % 118876 9.98%
Anytime OSP 25 2000 78.86%(-3.83 %) 110698 ( ) 16.28%(+6.30%)
APP 25 2000 79.73%(-2.96 %) 104435 ( Y 2.92%( )
Baseline 50 1000 79.13% 193384 20.97%
Anytime OSP 50 1000  72.91%(-6.22 %) 202212 (+8828) 26.56%( )
APP 50 1000 82.0%( ) 163503 ( ) 14.71%( )
Baseline 100 500 70.87% 396572 28.97%
Anytime OSP 100 500  78.51%( ) 315349 ( ) 20.13%( )
APP 100 500 82.32%( ) 291295 ( ) 16.50%( )

|Sp| values of 25, 50 and 100. We observe the change in
CER in Fig. 3, which shows that APP maintains a lower
CER throughout training compared to its counterparts while
varying the sequence length |Sp]|.

3.1.3. FEW SHOT EXPERIMENTS ON RESTRICTED
IMAGENET

Table 2: Results on Few-shot Restricted ImageNet ALMA.

Method [M¢| |Sp| @  Test Accuracy(t) CER(}) Generalisation Gap(|)
Baseline 756 10 540 43.36% 25328 17.39%
Anytime OSP - S 47125%( ) 24978 (-:350)  21.53%(+4.13%)
APP - S - 4040%(-2.96%) 24712(616)  6.96%( )
Baseline 126 30 270 40.81% 75128 55.50%
Anytime OSP - - - 44.55%( ) 76871 (+1743) 48.53%( )
APP - S 4% ) 73206 (-1922)  34.42%( )
Baseline 252 30 540 48.03% 68832 48.73%
Anytime OSP - - - 50.23%( ) 68765 (-67) 45.29%( )
APP - - - 55.04%( ) 66239 (2593)  26.39%( )
Baseline 54 70 270 47.88% 159204 45.03%
Anytime OSP - - - 51.45%( ) 158608 ( ) 45.36%(+0.33 %)
APP - - - 48.90%( ) 162360 (+3156)  30.74%( )
Baseline 108 70 540 61.39% 140069 34.46%
Anytime OSP - - 6139%(0%) 139152 (-917)  32.98%( )
APP - S 6249%( ) 139963 (-106)  17.59%( )

In this section, we investigate the performance of APP com-
pared to Anytime OSP and the baseline models on Restricted
Balanced ImageNet (Engstrom et al., 2019; Tsipras et al.,
2018) using various few-shot learning settings. We primar-
ily conduct experiments using the following two few-shot
settings.

1. a = 270: For this, we only keep 270 samples per class,
which totals to 3780 samples for the entire data set. We
tested this for |Sp| = 30,70 where |[M;| = 126, 54
samples, respectively.

2. o = 540: For this, we keep only 540 samples per class,
which totals 7560 samples for the complete dataset.
We tested this for | S| = 10,30, 70 where |[M;| =
756,252, 108 samples, respectively.

As reported in Table 2, we observe that APP significantly
reduces the generalisation gap for each model variant com-
pared to the Anytime OSP and the baseline counterparts.
Excluding the experiment of o« = 270, |Sg| = 70, we ob-
served a decrease in CER compared to the baseline model.

For all models, APP significantly reduces the generalisation
gap and also improves test accuracy, except in the case of
the experiment |Sg| = 10. Similar to Sect. 3.1.2, the target
sparsity was kept fixed at 7 = 4.5 and the backbone used
throughout was R-50.

3.2. Transitions in generalisation gap
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Figure 4: Generalisation gap curves during training of APP,
and Baseline for the results in Table 2.

We visualize the generalisation gap as a function of training
iterations across the megabatches in the stream Sp in Fig.4
for the experiments reported in Table 2. As demonstrated
in Fig. 1, we observe the same non-monotonic transition
in the high number of megabatch |Sp| = 30, 70 settings
where the model initially oscillates within the under-fitting
phase and then continues into a critical over-fitting regime
before undergoing a smooth continuous transition where the
generalisation gap steadily decreases.

In all subplots, it can be seen that APP consistently main-
tains a lower generalisation gap compared to its Anytime
OSP and baseline counterparts.

4. Conclusion

In this work, we introduced Anytime Progressive Pruning
(APP), a novel way to progressively prune deep networks
while training in an ALMA regime. We improvise on ex-
isting pruning at initialization strategy to design APP and
perform an extensive empirical evaluation to validate perfor-
mance improvement in various architectures and datasets.
We found that progressively pruning deep networks with
APP while training in an ALMA setting causes a significant
drop in the generalisation gap compared to one-shot pruning
methods and the dense baseline model.

Future work includes analyzing the non-monotonic transi-
tions observed in the generalisation gap and extending the
progressive pruning framework to other downstream tasks.
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