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Abstract

We analyze the structure of network architec-
tures obtained when trained under a performance-
resources trade-off for various datasets. To this
end, we use a flexible setup allowing for a neural
network to learn both its size and topology during
the course of a standard gradient-based training.
The resulting network has the structure of a graph
tailored to the particular learning task and dataset.
We explore the properties of the resulting network
architectures for a number of datasets of varying
difficulty observing systematic regularities. The
obtained graphs can be therefore understood as en-
coding nontrivial characteristics of the particular
classification tasks.

1. Introduction

Classical Deep Learning Networks typically have a fixed
and rigid structure a-priori independent of the specific learn-
ing task. In addition, a network usually utilizes all of its
resources irrespective of whether the given learning task is
challenging or not. One might expect, however, that the nat-
ural network structure and size for a specific dataset should
depend on the characteristics of the corresponding task.

The goal of this paper is to analyze the dependence between
the dataset difficulty and the corresponding network archi-
tecture under a performance-resources trade-off. To this end,
we adopt the construction introduced in (Xie et al., 2019)
and expanded in (Janik & Nowak, 2020), in which the ar-
chitectures are described given a Directed Acyclic Graph
(DAG). In that formulation the graph’s nodes represent the
layers (or stacks of operations), while the edges define the
connectivity patterns between the layers. We start from a
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fully-connected setup and allow the model to directly ad-
just its effective size and topology during the training. This
is achieved by incorporating a very natural performance-
resources trade-off in the network’s loss function:

Ltotal = Lobjective + Lresourcesu (1)

where the L, csources 18 an Ly loss on the weights of the
connections between the layers.

The aim of this paper is to analyze the graph architectures
obtained in the above described framework when training
the networks on a number of datasets of varying difficulty
on an image recognition task. In particular we are interested
in the following questions:

1. What are the common graph features of the resulting
networks?

2. How do the properties of the network depend on the
specific dataset and its difficulty?

Indeed, as we will see, the differences in the structure of
the obtained networks go beyond just an overall change in
size. Therefore, the studied framework has the benefit of
quantifying, in a nontrivial way, the internal structure of a
dataset or, more generally, the learning task.

2. Related work

The issue of introducing sparsity into the neural network un-
der a performance-resources trade-off framework has been
extensively explored in the field of neural network unstruc-
tured (LeCun et al., 1990; Han et al., 2015; Lin et al., 2017)
and structured (Wen et al., 2016; Molchanov et al., 2016;
Anwar et al., 2017; Li et al., 2016) pruning — see (Cheng
et al., 2017; Blalock et al., 2020) for a survey. Recently,
(Frankle & Carbin, 2018) hypothesize that pruning is merely
a way of retrieving an optimal subnetwork for a given input
weight initialization, while (Liu et al., 2018b) argue that
perhaps the structurally-pruned architecture itself is most
important for the efficiency of the final model. The link
between the neural network architecture and dataset is also
at the key interest in Neural Architecture Search (Zoph &
Le, 2017; Baker et al., 2016; Real et al., 2019; Liu et al.,
2018a; Ying et al., 2019; Zhang et al., 2018; Elsken et al.,
2019). In particualr, (Xie et al., 2019; Janik & Nowak, 2020)
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explore wiring topologies based on random graphs. In this
work we are not interested in designing any new pruning or
NAS approach. Instead, we analyze the properties of the
network connectivity patterns in order to answer what are
the common and task-specific graph properties of networks
emerging under a performance-resources trade-off.

3. The setup

From a DAG to a neural network. We construct the neu-
ral network architecture using a fully-connected, directed
acyclic graph with 60 nodes, following the approach in
(Janik & Nowak, 2020). The nodes correspond to a stack of
operations performed on tensors, while the edges define how
the information is propagated in the network (see Fig. 1a).
Each node performs a block of transformations composed
of a weighted aggregated sum of the inputs, followed by a
ReLU nonlinearity, Conv-2D mapping and a BatchNorm
layer. A residual connection in the form of Conv-1x1 con-
nects the output of the weighted aggregated sum and the
output of the whole block. The weights in the aggregation
performed in the nodes are given by the weights defined on
the edges of the DAG and are trainable as well. Intuitively,
each such edge weight corresponds to the portion of the
outgoing node’s output that is incorporated in the ingoing
node’s computations.

Following the common approach in image recognition, the
whole network is divided into three, equally-sized stages.
Within each stage, all nodes perform computations on ten-
sors with the same spatial resolution and number of channels.
The first (input) node sets the initial number of channels C'
for the first stage, keeping the same spatial resolution as the
size of the input image. The second and third stages down-
sample the resolution and increase the number of channels
by a factor of 2 and 4, respectively. This transition is per-
formed on every edge that connects different stages with the
use of a reduce block as defined in (Janik & Nowak, 2020)
— see Fig. 1a and Fig. 1b. Finally, when the computation
reaches the last node in the network, a standard global aver-
age pooling is applied, followed by a linear transformation
to the desired output dimension.

Imposing sparsity. As described above, the connectivity
of the neural network is encoded in the weights associated
to the edges of the directed acyclic graph. A straightforward
way of imposing the change in the network topology is to
enforce sparsity on those connections by a L1 loss on the
edge weights' :

Z | tanh w|. (2)

ecedges

Lresources (’LU) =

"We use the tanh activation instead of the sigmoid in (Xie
et al., 2019; Janik & Nowak, 2020) as we experimentally observe
it behaves more stable.

(b) (©

Figure 1: (a) The architecture of a single node in the graph.
The black arrows represent connections within a single res-
olution stage, while the beige ones go to lower resolution
stages. (b) The architecture of a fully connected DAG.
Different node colours represent different stages of compu-
tations. (¢) An example of the thresholding procedure on
the DAG from Fig. 1b. The red edges and nodes are the
paths that do not contribute to the output and can be further
removed.

Since the sign of the final weight does not matter, for the
rest of the paper we analyze the absolute value of tanh w,.
As we do not want to a-priori bias the architecture we
choose a constant initialisation of all edge weights so that
tanh win® = 0.5.

Pruning the network. As a result of adding L.csources
to the objective loss, the edge weights are encouraged to
have small magnitude. Edges with very low magnitude may
be interpreted as paths that do not contribute much to the
computation of the network and are therefore redundant and
can be safely eliminated.

In order to isolate the active subgraph within the fully con-
nected DAG, we perform straightforward thresholding at
the end of the training. Each edge with the absolute value of
the weight smaller than a given threshold 7 is erased from
the graph. Note that such a procedure may lead to paths
that do not originate in the input node or do not end in the
output node (see Fig. 1c). Those ’dead paths” can be further
removed from the graph, as they do not contribute to the
network output’.

4. Results

Used Datasets. The main goal of the present paper is
to investigate how the learned architectures depend on the
difficulty of the classification task. We train the networks
on five datasets with increasing diffculty: CMNIST, CKM-
NIST, CFashionMNIST, CIFAR10 and CIFAR10_TS8. The
CMNIST, CKMNIST and CFashionMNIST from (Janik
& Witaszezyk, 2020) are randomly colored versions of
MNIST, KMNIST and FashionMNIST datasets, embed-
ded in a 32 x 32 image space. CIFAR10.T8 (Janik &
Witaszczyk, 2020) is a more challenging version of the

2This can be implemented by a simple variation of the Kahn’s
algorithm for topological sort (Kahn, 1962)
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standard CIFAR10, where the original images are cut into
8 x 8 pieces and then shuffled and rotated by multiples of
90°. The random shuffling and rotations is kept fixed for all
images in CIFAR10.

We use the same learning regime for all datasets, which is
identical to the one used by (Janik & Nowak, 2020) for CI-
FARI10 (see Appendix A for details). The total loss function
is composed of the standard cross-entropy loss to which we
add the L,csources 10ss term with coefficient A = 1le — 3.
All models use the same number of initial parameters.

100.0 —swwese
97.5

95.0¢

esose o

92,5/ eweee el e

o

90.0

sparsity
o
©

B
87.5 o

eoee-

test accuracy

85.0

o oo
R

e CMNIST e~ CIFARID
CKMNIST - CFARLOTS
. i ~®- CFashionMNIST

000 0.004 0.008 0.012 0.016 0.020 0.024
threshold

82.5

80

o
o

0.000 0.004 0.608 0.012 0.016 0.020 0.024
threshold

Figure 2: The test accuracy and sparsity plots for given
thresholds.

Thresholding. For a set of predefined thresholds ™ we
compute the mean test accuracy and mean sparsity obtained
after downsizing the graph as described in Section 3. The
results are presented in Fig. 2. For relatively simple datasets
(CMNIST,CKMNIST), the thresholding procedure quickly
increases sparsity. Further increase in the sparsity causes
the model to deteriorate and finally disconnects the graph.
More challenging datasets, as expected, seem to require
higher density. For all the datasets erasing edges up to
threshold 0.006 practically does not affect the accuracy,
while significantly improving the sparsity. This suggests
that the deleted links are indeed insignificant and redundant.
For the rest of the paper, we investigate the architectures
obtained with 7 = 0.006 as a reasonable choice for all
datasets, which allows for the maximum sparsity without a

noticeable drop in performance..

Obtained Networks. In Fig. 3, we show a selection of net-
works obtained for the various datasets for specific random
initialisation of the standard network parameters. Recall,
however, that the initial values of all edge weights were set
to 0.5 in order not to bias the emerging network connectivity
by random initialisation. The graphs are drawn in 2D space
using the Kamada-Kawai (Kamada & Kawai, 1989) embed-
ding. We observe visually a steady increase in the network
complexity with the difficulty of the classification task. In
addition, we see significant structural similarity between

3We emphasise that we do not perform (and do not need) any
further fine-tuning. The architectures obtained by us are also
capable of achieving high performance when trained again from
scratch with arbitrary initialisation - see Appendix B

Table 1: Main structural characteristics of the obtained net-
works (with threshold 0.006) averaged over 10 different
initializations. The initial network has in total 60 nodes,
distributed evenly between the three stages and has 863.3k
parameters.

CMNIST CKMNIST  CFashionMNIST CIFAR10 CIFARI10_T8
sparsity (all)  0.988 £ 0.003  0.982 4+ 0.004 0.9354+0.008 0.831+0.016 0.788 £0.012
- stage 0 0.9814+0.015  0.983 £ 0.009 0.90540.023  0.791 +£0.037  0.712 £ 0.034
- stage 1 0.989 4 0.006  0.989 =+ 0.006 0.936 +0.028  0.725 £ 0.058  0.754 £ 0.057
- stage 2 0.952 4 0.020  0.905 + 0.012 0.82240.035 0.678 +£0.046 0.573 4 0.061
nodes (all) 12.5+£2.3 17.0+£2.1 26.9 +2.3 48.5+ 2.6 48.2+ 1.5
- stage 0 36+1.8 35+1.2 8.8+ 1.0 15.6 £0.7 16.5+ 1.1
- stage 1 29+1.1 3.7+£1.3 7.4+1.5 173+ 1.6 149+ 1.3
- stage 2 6.0+1.3 9.8+0.9 10.7+ 1.5 156 £ 1.8 16.8 +1.2
parameters 166k + 30k 253k & 34k 333k & 34k 615k & 49k 613k & 24k
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Figure 3: The thresholded networks (at the threshold 0.006)
obtained from training for a specific random initialisation.
See Appendix E for other initializations.

the graphs obtained for the same dataset from different ran-
dom initializations (see Appendix E). In the following we
provide a quantitative investigation into these issues.

Structural Characteristics. In Table 1 we have collected
the means and standard deviations of the structural charac-
teristics of the obtained thresholded networks (7 = 0.006).
These data quantify several important tendencies which can
be visually assessed from Fig. 3.

As expected, as the learning task gets easier the networks
drop a larger fraction of the original connections. Similarly,
the size of the network, as measured by the number of
surviving nodes, increases with the complexity of the dataset.
The obtained networks are significantly smaller than the
original fully connected DAG, yet they do not suffer from a
performance loss.

Furthermore, the distribution of surviving computational
nodes between the various resolution stages of processing
differs systematically between the datasets. Of particular
note is the relatively large number of nodes for KMNIST
(Kuzushiji-MNIST) in the final stage of processing. It may
suggest that the Japanese characters seem to require integra-
tion of features at the global level. An opposite tendency
is represented by CFashionMNIST, where the whole in-
crease in the number of nodes with respect to KMNIST
occurs essentially in the lower resolution stages. It is also
interesting to compare from this perspective CIFAR10 and
CIFAR10_T8. They differ most in the number of nodes in
the middle stage, with the latter dataset having the smaller
number. In addition, even though the number of nodes of
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stage 0 and stage 2 is similar, there is a significant difference
in the number of retained connections within these stages
for those two datasets. The high-level stages have lower
sparsity so are more interlinked and thus more complex.

Table 2: A selection of graph characteristics of the networks
thresholded at 0.006.

dataset CMNIST CKMNIST  CFashionMNIST CIFARI0  CIFARIO_T8
log_paths 4.03 +1.03 5.50 & 0.87 11.76 £ 0.81 18474+ 1.31 21.37£1.27
mean_path 7.44 % 1.05 8.95+0.76 1128 +£0.85 16.424+0.99 18.21 £1.25
max_path 9.60+1.35 12.00 £ 1.41 18.80 £ 1.75 28.004+2.49 32.60 £+ 2.63
In_communicability —3.26+1.86 —3.86+1.28 5524+1.37 11.03+£0.90 14.59+0.74
edge_connectivity 1.30 £0.48 1.30 £0.48 4.804+2.49 13.60+3.44 20.20£1.99
mean_degree 3.48 +0.46 3.75 4 0.30 8.534+0.67 12.31+0.86 15.58+£0.73
pca_elongation 0.78 £ 0.15 0.72 4+ 0.10 0.52 4+ 0.06 0.37 £ 0.06 0.44 4+ 0.06

Graph characteristics. In Table 2, we have collected
a selection of numerical graph characteristics which dif-
fer the most among the obtained networks: the loga-
rithm of the total number of different paths going between
the input and output (lLog_paths), the mean and maxi-
mal length of such paths (mean_path, max_path), the
1n_communicability (Estrada & Hatano, 2008)*, the
edge_connectivity, and pca_elongation (Janik
& Nowak, 2020). See Appendix F for more detailed defini-
tions of those features.

We may observe a steady increase in the first four, path
related, features. This captures the increase of complex-
ity of the obtained networks. Note that mean_path can
be understood as the depth of the network. Similarly, the
edge_connectivity (minimal number of edges needed
to disconnect the graph) can be understood as a proxy for
the breadth of the graph or the extent of interconnections.
Its increase for the more challenging datasets is clear.

The last observable in Table 2, pca_elongation was
used in (Janik & Nowak, 2020) to define the quasi-1-
dimensional (Q1D) family — a class of well-performing
architectures that was identified by analyzing static con-
nectives based on radnom DAGs. A graph was said to
satisfy the Q1D criterion, if pca_elongation> 0.25
and edge_connectivity> 1. It is worth noting that
the vast majority of the graphs obtained in the learning
process have significantly larger pca_elongation than
the 0.25 value appearing in the definition of Q1D (see Ta-
ble 2). It can also be observed in Fig. 3 that the networks for
CMNIST, CKMNIST and CFashionMNIST have clearly a
quasi-1-dimensional structure’. One should emphasise that
the initial network architecture, the fully connected DAG,
has pca_elongation= 0, which means that the Q1D
structure emerges in the process of learning.

4(the logarithm of) the communicability — an element of the
exponent of the adjacency matrix which measures a weighted sum
over walks between the input and output node

SQID is sometimes violated for the simplest networks which
can be split by cutting a single edge.

CFashionMNIST
CIFAR10_T8

Figure 4: Network similarity matrix (see Fig. 9 in Ap-
pendix E).

In order to visualise to what extent the obtained networks for
a given dataset are similar between themselves and different
from networks for other datasets, for each of the 50 obtained
networks we have collected the features exhibited in Tables 1
and 2 (apart from the number of parameters), standardised
them and evaluated pairwise similarity using the standard
RBF kernel. The result is shown in Fig. 4. One may ob-
serve that for the same dataset, all the obtained graphs are
strongly correlated. Moreover, networks working on tasks
of comparable difficulty also seem to share similarities like
CMNIST and CKMNIST, or CIFAR10 and CIFAR10_T8.
This confirms that the uncovered wiring topology is firmly
related to the problem it is solving.

Conclusions. In the present paper we have analyzed net-
works obtained in a simple but effective method of learn-
ing the network’s size and topology under a performance-
resources trade-off. Basing the construction on an initial
fully connected DAG, allows the network to have full free-
dom of exploring local and global connectivity.

The obtained networks are clearly correlated with the diffi-
culty of the dataset. On the one hand, we observe certain
common features like the more involved connectivity of the
high-level processing and a Q1D structure. On the other
hand, we see differences specific to particular datasets like
the proportion of nodes and connections in various resolu-
tion stages. The fact that the obtained graphs are charac-
teristic to the specific learning tasks opens up a fascinating
possibility of understanding them as representing hidden
internal structures of the particular datasets, via a mapping:

D — P(G) 3)

which associates to each dataset D (more precisely learning
task) a distribution of graphs. Moreover this probability dis-
tribution seems to be quite localised, as we have observed
in Fig. 4 that the obtained networks have consistently char-
acteristic features for a given dataset. It would be very
interesting to explore the properties of those distributions
further.
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A. Training Regime

We train the fully connected DAG architectures 10 times for each dataset using different initialisation but the same learning
regime, adopted from (Janik & Nowak, 2020) for CIFAR10. All models are trained for 100 epochs using the SGD algorithm
with starting learning rate 0.1, momentum 0.9, batch size 128 and weight decay le-4. In the 80th and 90th epoch the
learning rate is decreased by factor 10. The initial number of channels is set to C' = 11 in order for the networks to have
approximately the same number of parameters as ResNet-56 (He et al., 2016). The models are trained and evaluated on the
standard train/test splits defined for each dataset. For CIFAR10_T8 we adopt the same split as for CIFAR10. The objective
loss function is composed of the standard cross-entropy loss to which we add the Lgpqrsi¢y loss term with coefficient
A=1le—3.

For the retrain experiments we use the same settings but with different initialisation seed. All networks were trained using
the GeForce RTX 2080 Ti graphic card.

B. Training with Reintialization
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Figure 5: The test accuracy of the initial fully-connected DAG, the thresholded model, the thresholded model after retraining
from scratch, and same but with C' increased to match the number of parameters of ResNet-56.

We validate whether the obtained architectures are also capable of achieving high performance when trained again from
scratch with arbitrary initialisation. We consider two scenarios. In the first one we train the thresholded network from
scratch using different initialization. In the second setup we additionally fit the number of initial channels C' separately for
each of the thresholded networks, so that the number of parameters approximately matches the number of parameters of
ResNet-56 (and the original, fully connected DAG network).

As observed in Fig. 5, retraining the obtained architectures with the same learning regime yields comparable or better
performance to the one achieved by the fully connected DAG. This shows that the resulting connectivity patterns are indeed
meaningful and not limited to a specific weight initialisation. Moreover, in both retraining scenarios, the time of one epoch
is significantly smaller than for the complete DAG - see Section C in the Appendix.

C. Training Time

In Table 3 we report the mean time of one epoch during the training of the fully connected DAG network and the retrained
networks obtained for threshold 0.006. In the latter case, as described in the paper, we consider two situations: retraining
with the same number of initial channels C' = 11 as the original, complete DAG and fitting the number of channels C'
separately for each architecture in order for the networks to have approximately the same number of parameters as the
complete DAG. All models were trained using the GeForce RTX 2080 Ti graphic card. Although for different computational
infrastructure the values may vary a bit, the advantage gained after pruning is indisputable.
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Table 3: The mean epoch time during the training of the original graph, the obtained network with number of initial channels
C being set to the same value as the fully connected DAG, and the obtained network when C' was fitted separately for each
architecture.

full DAG rerun rerun (fit C)
dataset
CMNIST 151.99+17.73  21.65+3.28 21.814+3.60
CKMNIST 147.03£19.55 26.05+4.39 25.84+7.00
CFashionMNIST 149.71+£19.46 41.09+16.92 32.774+2.33
CIFAR10 120.98+16.59  75.2943.07 59.234+13.23
CIFAR10_TS8 107.42+5.53 76.09+3.63 69.45+5.48
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Figure 6: (a) The magnitudes of a selection of the retained (left) and eliminated (right) edges during the training. (b) The
mean DSC score between the set of edges in the thresholded graph and the set of the same size composed of edges with the
largest and smallest weights after the first training epoch.

D. Edge Weight Dynamics

In this section we would like to comment on the behaviour of the magnitudes of the edge weights during training. In Fig. 6a
we show the evolution of a subset of weights which get retained after thresholding and of those which get eliminated. In
addition, in Fig. 6b, we compute the DSC score® between the set of edges in the thresholded graph and the set of the same
size composed of edges with the largest and the smallest weights after the first training epoch. We observe that weights
which are initially very large typically stay large throughout the training (see left plot in Fig. 6a). However, as observed in
Fig. 6b, such connections are not the majority among the retained ones, accounting for at most circa 40% of all final edges
(for CIFAR10_T8). In addition, weights which are small in the first epoch of the training tend to be eliminated for simple
datasets such as CMNIST and CKMNIST, however are still subject to change for harder datasets such as CIFAR10 and
CIFAR10_TS. This is intuitive, as easier tasks require less training iterations to converge and hence the distribution of the
weights in the first stage of the training is more similar to the distribution obtained at the end of optimization.

Finally, we would like to point out that not all of the removed edges have constantly the smallest magnitudes during the
training. This can be observed in the right plot of Fig. 6a. The weights fluctuate, mostly maintaining values larger than the
used threshold (and comparable to the magnitudes of many of the retained edges), and eventually settle down to the final
values in the last stage of training, after the reduction of the learning rate. We hypothesize that this can be interpreted as
exploring various wiring patterns, before picking out a particular connectivity at the end of the optimization.

In addition, for each trained network we store the values of the edge weights at the end of each epoch. We analyze the
changes in the magnitudes of the retained and eliminated weights in Table 4. It may be observed that typically at least half

®Sgrensen—Dice coefficient between edge sets E, and Ey : DSCE, 5, = |Ea N Eb|/(|Ea| + |Es|)
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Figure 7: The structural similarity (a) and the DSC similarity (b) between the thresholded networks and networks composed
of the largest edges of the first epoch. For simple MNIST-like datasets the strctural similarity is quite large, at the same time
being much weaker for the more challenging tasks. Nevertheless, the considered edge sets are much different, as measured
by the DSC similarity. Note that the vertical lines of low structural similarity for CMNIST datasets (in the top right corrner
of plot (a)) are caused by the weakly-connected condition. Those graphs would be disconnected if one would not include
more high magnitude edges.

of the retained after thresholding edges had values lower than the target threshold. A single retained weight experience such
change on average at least circa three times for the simple datasets and five to six times for the harder datasets. This shows
that the sole fact of achieving a very small weight value at some step of the optimization process does not prevent the edge
from recovering at a later point. In addition, at least half of the eliminated edges after firstly becoming smaller than the
target threshold experience values significantly larger than the target threshold, which is coherent with the fluctuations of the
weights in the right plot of Fig. 6a.

Structural and Edge Similarity In addition to the discussion above we further analyze the networks obtained by selecting
the edges with the largest magnitude in the first epoch of training to the networks obtained by the thresholding framework in
terms of graph properties.

To this end we construct graphs which are composed of the set of k& edges which have the largest absolute value of weights
in the first epoch of training. We pick the value k in such a manner that the resulting edge set is the smallest edges set
that renders the graph weakly-connected and its size it at least as large as the size induced by the mean sparsity. We refer
to these topologies as ’top-k” graphs. Note that we need the weakly-connected condition since for simple datasets such
as CMNIST and CKMNIST the networks obtained by simply selecting the set of the size given by the mean sparsity are
often disconnected. This would pose computational problems in many graph properties from Table 2 and prevent us from
computing the RBF kernel similarity.

Next, as before, for all datasets we compute the structural (RBF) and DSC similarity between all of the thresholded networks
and the corresponding top-k graphs. The results are presented in Fig. 7. The structural similarity is strong for the simpler
datasets and much weaker for the more complex datasets. This is intuitive, since easier tasks require less training iterations
to converge, and thus the structure obtained in the first epoch of training may be already similar to the one achieved at the
end. However, note that the obtained edge sets are much different, as measured by the DSC score in Fig. 7b. This shows that
the the graphs obtained at the end of the thresholding framework are indeed distinct from the graphs arising in the early
stage of training.
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Table 4: The table summarizes some properties of the edge evolution during training for different datasets. (A) reports the
percentage of the retained edges which at least for one epoch were below the target threshold during the training. (B) reports
the mean number of epochs at the end of which the retained edges had values lower than the target threshold. (C) reports
the percentage of the eliminated edges which after firstly becoming smaller than the target threshold experienced values
ten times larger than the target threshold. (D) reports the mean number of epochs at the end of which the eliminated edges
experienced values larger than the target threshold after firstly becoming smaller than the target threshold. The last column
presents the mean number of edges in the thresholded network.

dataset A B C D number of edges
CMNIST 50.00£6.50 3.79£1.76 49.33+266.80 1.64=+0.57 23.00=+5.57
CKMNIST 4837 £7.14 3824179 52.76+43.24 2.19+£0.16 33.70£6.15
CFashionMNITS 61.95£13.32 5.78£0.72 47.44+101.95 1.90+0.24 115.104£13.57
CIFAR10 53.75+£23.85 5.34£0.59 74.93+£23.98 593+043 299.00 £ 26.51
CIFAR10_T8 63.41 £17.51 6.61+£0.33 76.08+25.40 5.38+£0.31 375.50+20.12

Table 5: The test accuracy obtained for the standard dense model, the trained model after thresholding (with threshold equal
to 0.006) and the thresholded model retrained from scratch.

standard thresholded retrained (fit C)

Full DAG 92.849 £0.152 92.786 £ 0.123  92.967 4+ 0.253
Subgraph  92.901 £0.193 92.886 £ 0.220 93.265 £ 0.178

D.1. Introducing edge bias.

Implying sparsity by magnitude based pruning and L1 regularization allows us to investigate the impact of introducing
structural bias in the networks, which can be easily implemented by altering the underlying network connectivity. Instead of
performing the training on the fully-connected DAG one may decide to remove some connections beforehand, performing
the optimization on a subgraph. Since local edge connectivity is typically believed to lead to better performing models (Janik
& Nowak, 2020; Elsken et al., 2019), we consider a graph in which all edges connecting nodes i and j for which |i — j| > 10
are removed. The results are presented in Table 5. The standard test accuracy and the accuracy after thresholding are quite
similar in the Full DAG and subgraph approaches. However, in the latter case, the performance of the obtained models when
trained from scratch is slightly better and has a lower standard deviation.

E. Networks Obtained for Various Datasets

In Fig. 8 we present the UMAP embedding of the obtained architectures for thresholds equal or smaller than 0.006. The
embedding was computed on the standardised features from Tabels 1 and 2 from the paper (apart from the number of
parameters). It is evident that networks solving the same task tend to cluster, being similar to each other. This similarity can
be also visually observed in Fig. 9, where we demonstrate a subset of the obtained networks for threshold 0.006 for different
datasets with various initialisations.

F. Graph Characteristics

In table 6 we provide a more comprehensive description of the graph properties which were used in the main paper. The
names with asterisk (*) indicate that a given value was computed with the use of the net workx package’

"https://networkx.org/
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Table 6: The summary of the used graph properties. The names with asterisk (*) indicate that a given value was computed
with the use of the networkx package.

property description

log.paths The logarithm of the number of all paths that start in the input
node and and in the output node.

mean_path The mean length of a path in the graph.

max_path* The maximum path length in the graph.

In_communicability* | The logarithm of the communicability between the input and the
output node. The communicability of a pair of nodes (u, v) in a
graph G = (V, E) is the sum of closed walks of different lengths
starting at node u and ending at node v:

Clu,v) =Y ¢hohet,

where q5§ and )\; are the j-th value in the i-th eigenvector and the
i-th eigenvalue of the spectral decomposition of the adjacency
matrix.

edge_connectivity* The edge connectivity between the input and the output node. The
edge connectivity between a pair of nodes (u, v) is the minimum
number of edges that need to be removed in order to disconnect
u form v (two nodes are considered disconnected if there is no
path between them).

mean_degree* The degree of a node in a graph is the number of edges going
from our to that node. The mean degree is the mean degree over
all nodes.

pca-elongation The PCA elongation is computed in relation to a graph embedding.

First, the graph nodes are embedded into a two-dimensional space
using the Kamada-Kawai algorithm. Next, a PCA decomposition
is performed on the obtained embedding. PCA elongation is then
the defined as:

pca_elongation = 2V — 0.5,

where V] is the variance ratio corresponding to the largest eigen-
value computed during the decomposition. Note that this as a
non-trivial characteristic of the graph, since the Kamada-Kawai
algorithm encodes the internal information related to the graph
structure. Large PCA elongation are typically associated with
locally connected networks that have a sequential global connec-
tvity.
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Figure 8: The UMAP embedding of the networks obtained for thresholds 7 < 0.006. Different colours represent different
datasets.



Connectivity Properties of Neural Networks Under Performance-Resources Trade-off

CMNIST

CKMNIST

CFashionMNIST

CIFARI10

CIFAR10_T8

Figure 9: The thresholded networks (at the threshold 0.006) obtained from training with several random initialisations.



