Learning Modularity for Generalizable Robotic Behaviors

Corban Rivera! Chace Ashcraft! Edward W. Staley ! Katie M. Popek ! Kapil D. Katyal! Bart L. Paulhamus '

Abstract

Modularity in deep neural networks has provided
scaling efficiencies leading to state of the art per-
formance across multiple domains. A critical chal-
lenge for these networks is how to build and main-
tain a library of generalizable behavior modules.
In this work, we propose a novel framework for
building and maintaining a library of behavior
primitives called Primitive Imitation for Control
(PICO). Unlabeled demonstrations are automat-
ically decomposed into existing or missing sub-
behaviors which allows the framework to identify
novel behaviors while not duplicating existing
behaviors. We compared our results to several
related approaches across two environments and
achieve both better label accuracy and reconstruc-
tion accuracy as measured by action prediction
mean squared error.

1. INTRODUCTION

Neural networks have demonstrated extraordinary ability to
control systems with high degrees of freedom. An important
challenge is how to control such high-degree of freedom
systems with only a few control inputs. One approach to
address the scaling challenge is through modularity and
hierarchical control mechanisms (Zhao et al., 2017; Akinola
et al., 2017; Shazeer et al., 2017). These approaches use
the limited number of inputs to select a primitive control
policy, from a library of primitive behaviors, and potentially
a target. Complex tasks are performed by chaining primitive
behaviors.

We investigated how we might learn and maintain a primi-
tive library from unlabeled demonstrations and, assuming
the behavior primitive library exists, how would one know

“Equal contribution 'Intelligent Systems Center
Johns Hopkins University Applied Physics Lab
11100 Johns Hopkins Rd. Laurel, MD 20723. Correspondence to:
Corban Rivera <corban.rivera@jhuapl.edu>.

DyNN workshop at the 39*" International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

Predicted action from model n

Probability of model 1

6 Hidden state at time t

Probability of a missing primitive

(c)

Figure 1. We explore the challenge of building and maintaining
a behavior repository given unlabeled demonstrations. Our ex-
periments include two manipulation task domains including (a)
reach and grasp and (b) dial pad. (c) Illustration of our hierarchical
recurrent deep network architecture for task decomposition, novel
behavior primitive discovery, and behavior blending. Our unique
approach directly minimizes reconstruction error while building
and maintaining a library of behavior primitives.

when to use, adapt, or create a new primitive behavior. We
propose that the behavior library should be actively main-
tained to minimize redundancy and maximize the ability to
reconstruct complex tasks through chains of the primitive
behaviors. In this work, we explore techniques to directly
optimize for these criteria.

2. PRELIMINARIES

Learning from demonstration (LfD) and imitation learn-
ing allow agents to execute a task by observing the task
being performed (Hussein et al., 2017). In the robotics
domain, a goal of imitation learning is to produce a map-
ping, m, from states to actions, known as a control pol-
icy (Argall et al., 2009; Schaal & Atkeson, 2010), that

PICO: Primitive Imitation for COntrol

has the maximum likelihood of producing the demon-
stration dataset D = {p1, pa,...,pn}, where each p =
((s1,a1),(s2,a2),...,(sT,ar) is a demonstration trajec-
tory of of state, action pairs. The demonstrations can be
created by another control policy (Rusu et al., 2015), by
a human expert (Konidaris et al., 2012), or in a simulated
environment (Shiarlis et al., 2018; Kipf et al., 2019). Let
mp parameterized by 6. The goal is then to optimize Equa-
tion 1 by varying € and a library of behavior primitives
B = (7T1,7T2,...,7TK)

T
maXEp[Z log 7o (at|st)] (1

t=1

3. Approach

In this work, we introduce Primitive Imitation for Con-
trol (PICO). Our contribution is a unique solution that si-
multaneously learns subtask decomposition from unlabeled
task demonstrations, trains missing behavior primitives, and
learns a hierarchical control mechanism that allows blend-
ing of primitive behaviors to create even greater behavioral
diversity. Our approach directly optimizes the contents of
the primitive library to maximize the ability to reconstruct
unlabeled task demonstrations from sequences of primi-
tive behaviors. Our approach takes inspiration the work
on mixtures-of-experts (Shazeer et al., 2017; Jacobs et al.,
1991).

PICO aims to reconstruct the given trajectories as well as
possible using the existing sub-task policy library. As shown
in Equation 2, PIC'O minimizes the sum of squared error
between the observed action and the predicted action for
all actions over all timepoints 7" and all trajectories p € D
which we refer to as reconstruction error. Let (s,,,a,,)
be the state-action tuple corresponding to p, timepoint ¢
in trajectory p. The action prediction, equation 3, is the
product of the probability p(7|s,,) of a sub-task policy 7
conditioned on the state s,, and the action predicted by
policy (s,) for the state s,,. Substituting equation 3 into
2 results in Equation 4 which is the optimization problem
for PICO.

T
min Z Z(am —ap,)? (2)

pED t=0

ap, = Zp(ﬂ'lsm)ﬂ(sm) (3)

neB

T
min Z Z(ap,, - Z p(rlsp,)m(sp,))? (C))

peD t=0 TEB

3.1. Neural Network Architecture

Estimates of both p(7|s,,) and 7(s,,) are given by a recur-
rent neural network architecture. Figure 2 gives an overview
of the recurrent and hierarchical network architecture. We
solve for the objective in Equation 4 directly by back propa-
gation through a recurrent neural network with equation 2
as the loss function. The model architecture is composed
of two branches that are recombined to compute the action
prediction at each timepoint.

To more easily compare with other approaches that do not
blend sub-task policies, we estimate the maximum likeli-
hood sub-task policy label at each timepoint. We refer to
sub-task policies as behavior primitives. The behavior prim-
itive label prediction is given by the maximum likelihood
estimate of m shown in Equation 5 for time ¢ in trajectory p.

argmax p(m|p;) Q)
TeEB

Figure 1 (c) illustrates how we compute the predicted action
a4 at time ¢. In the figure, the probability of 7 given state
Sp, is Ar = p(m|s,,) for m € B. The latent representation
h, at the current timepoint ¢ is a function of both the value
of the latent representation of the previous state h;_; and
the current state s;

| Demonstrations (batch, timepoints, features! |

I'4 D)
v
Behavior Primitive Library
\ ¥ 3
Reach Grasp Lift
; | | | | I |
| | ! | [|
! I] [| [\

e —
—
‘

| Behavior Primitive Label Prediction | 4

Action Prediction

Figure 2. Neural network architecture for P/C'O. Given a set
of input trajectories and a behavior primitive library, the core
architecture follows two branches, the left most branch estimates a
distribution over the behavior primitives. The right hand branch
estimates the action prediction from each primitive behavior sub-
model. We compute the predicted action as a linear combination
between the behavior primitive distribution and the set of predicted
actions from all behavior primitives.

Figure 2 details the architecture used for PIC'O based on
the Husky+URS dataset example. Unless otherwise speci-
fied, the fully connected (FC) layers have ReLU activations,
except for the output layers from behavior primitive mod-
els. The last layer of behavior primitive models have linear
activations to support diverse action predictions. While not

PICO: Primitive Imitation for COntrol

shown in Figure 2, the network architecture also returns the
predicted latent embedding and behavior primitive distribu-
tion for additional visualization and analysis.

3.2. Discovering and Training New Behavior Primitives

An important aspect of our approach is the ability to discover
and create new behavior primitives from a set of trajectories
and a partial behavior primitive library. PIC'O detects and
trains new behavior primitive models simultaneously. As
shown in figure 1(c), PIC'O supports building new behavior
primitive models by adding additional randomly initialized
behavior models to the library prior to training. For our
experiments, we assume that we know the correct number
of missing primitives.

We define a gap in a trajectory as region within a demonstra-
tion where actions are not predicted with high probability
using the existing behavior primitive models. A gap in a
trajectory implies that the current library of behavior primi-
tives is insufficient to describe a set of state-action tuples p
in some part of the given trajectory. This also implies that
the probability p(7|p;) that the data p; for time point ¢ was
generated by the current library of behavior primitive mod-
els is low for all 7 € B. These low probabilities increase
the likelihood that an additional randomly initialized behav-
ior primitive policy 7, might have a higher probability
P(Tnew|pt) > p(m|pt) for m € B. The data p; is then used
to train 7y,¢,,. For nearby data in the same gap region p; 1,
it is now more likely that p(mpew|pi+1) > p(7|pis1) for
m € B. This mechanism allows 7, to develop in to a
new behavior primitive that is not well covered by existing
primitives.

4. EXPERIMENTS AND DISCUSSION

With our experiments, we aimed to (i) evaluate the ability
of PICO to identify parts of demonstrations that are not
represented by existing behavior primitives and rebuild the
missing behavior primitive, and (ii) demonstrate generaliza-
tion of PICO by comparison to several recent alternative
approaches across two manipulation task domains.

4.1. Robotic Manipulation Task Domains

Husky-URS Reach and Grasp — A robotic reach and grasp
environment. The position of the target block randomized.
The dataset consists of 100 demonstrations of a Clearpath
Husky robot with a URS manipulator performing a variety
of reach, grasp, and lift tasks, see Figure 1(a). The number
of time steps in the demonstrations varied from 1000 to
1800, but each used all three primitives: reach, grasp, and
lift.

Dial Domain The dial domain (Shiarlis et al., 2018) is com-
posed of demonstrations from a Jaco manipulator pressing

4 keys in sequence (e.g. 3,5,4,7) illustrated in Figure 1(b).
The positions of the keys are randomly shuffled for each
demonstration, but the position of each key is given in the
state vector. In this environment, pressing an individual
digit is the behavior primitive. Dialpad demonstrations were
generated using default parameters (Shiarlis et al., 2018).

4.2. Training Details

As described in Equation 2, the loss used to train the model
is mean squared error between the predicted and observed
actions over all timepoints and all demonstrations. The
approach illustated in Figure 2 is trained end to end using
the the DART (Laskey et al., 2017) technique for imitation
learning over 40 epochs with the Adam optimizer.

4.3. Evaluation Metrics

Two metrics were computed to estimate performance. First,
we evaluated mean squared error (MSE) as shown in Equa-
tion 2 between the predicted and given action. Second, we
computed the behavior primitive label accuracy which was a
comparison between the predicted and given behavior prim-
itive label. Label accuracy was computed as the number of
matching labels divided by the total number of comparisons.
Both metrics were computed over all timepoints and over
all demonstrations in the test set.

4.4. Comparison Baselines

We compared PICO to TACO (Shiarlis et al., 2018) and
the extended version of CTC (Graves et al., 2006) using an
open source implementations ' and default parameters. Both
CTC and TACO baseline approaches were tested with MLP
and RNN architectures. Due to space constraints, details of
CTC and TACO are described in more detail in Appendix
A4

4.5. Behavior Primitive Discovery

We evaluated the ability of PIC'O to recognize and build a
missing behavior primitive model focusing on the Husky-
URS5 Reach and Grasp task. We structured the experiment
as a leave-one-behavior-out experiment where one of the
three primitives (i.e. reach, grasp, lift) was replaced with
a randomly-initialized behavior primitive. An 80/20 split
between training and validation sets. Five trials were run
with the training and validation sets randomly chosen. The
label accuracy and action prediction MSE are shown in 3.
The leftmost bar shows the results with all primitives pre-
trained with behavior cloning. The remaining bars show
the accuracy when reach, grasp and lift, respectively, were
replaced with the gap primitive. Note, the gap primitive
was updated throughout the training with back-propagation

"https://github.com/KyriacosShiarli/taco

PICO: Primitive Imitation for COntrol

such that the final primitive ideally would perform as well
as the original pre-trained, behavior-cloned version; this
comparison is shown with the action prediction MSE. The
error bars show the standard deviation across the five trials.
While the label accuracy across all three replaced primitives
is approximately the same, the action prediction for the lift
primitive is significantly worse. We believe this is due to the
larger variance in lift trajectories. Unlike the reach and grasp
which have restrictions placed on their final target position
(it needs to be near the block), the final position of lift
is randomly placed above the block’s starting position. As
shown in Table 1, over all of the test trajectories, the average
label classification accuracy was 96% for our approach.

100

L T T

80 1

@
]

&
=]

Primitive Label Accuracy

20 4

All Primitives Reach Grasp Lift

(a) behavior label accuracy

0.5 1

Action mean squared error

0.1

I

T €L —

Al Primitives. Reach Grasp Lift

(b) action prediction MSE

Figure 3. Accuracy of PICO to correctly identify a primitive’s
label on the validation set (twenty randomly selected trajectories).
(a) The leftmost bar shows performance when all primitives are
in the library, successive bars denote accuracy when the reach,
grasp, and lift primitives are dropped out and learned from a
randomly generated “gap” primitive. Error bars represent the
standard deviation across five validation trials. (b) Mean squared
error between the ground truth action and the learned model’s
estimate averaged across twenty randomly selected test trajectories
five times.

4.6. Multi-domain comparison of label accuracy

The goal of this comparison was to evaluate the label pre-
diction accuracy given an existing library of behavior primi-

Table 1. Method comparisons using the Husky URS Reach and
Grasp dataset.

Husky URS | Label Accuracy | MSE Action Prediction
PICO 96 % 0.053
TACO (MLP) 74% 3.59
TACO (RNN) 73% 3.75
CTC (MLP) 25% 4.20
CTC (RNN) 33% 2.68

Table 2. Method comparisons using the Jaco Pinpad dataset.
*TACO (RNN) resulted in NaN loss after repeated attempts.

Jaco Pinpad | Label Accuracy | MSE Action Prediction
PICO 65% 0.0061
TACO (MLP) 47% 0.55
TACO (RNN) * *
CTC (MLP) 31% 0.57
CTC (RNN) 29% 0.58

tives. To isolate the label predictions of each approach, the
behavior primitive library was pretrained on the training
dataset including 1200 demonstrations and frozen. Label
classification and action prediction accuracy was then evalu-
ated on the test set including 280 demonstrations.

The average results of 5 runs are shown for TACO and CTC.
We evaluate each approach using the same label accuracy
and action prediction metrics. The summary of results are
shown in Table 2. We found that our approach achieves the
highest label accuracy at 65%. The overall label accuracy
of PICO on the dial dataset is lower than the Husky+URS
dataset. Additional analysis revealed that many of the mis-
labeling occurred at the beginning of a new key press where
context about where the Jaco is moving next is weakest.
The dataset is also more challenging than than the Husky
dataset because the number of unique behavior primitives
has increased from 3 to 10.

5. CONCLUSION

In this paper, we describe PIC'O, an approach to learn
behavior primitives from unlabeled demonstrations and a
partial set of behavior primitives. We compared our results
to several related approaches across two environments and
achieve both better label accuracy and reconstruction accu-
racy as measured by action prediction mean squared error.
While we have demonstrated success in these tasks, there
are limitations to our approach. The number additional prim-
itives to add to the library must be decided prior to training.
Future work may explore relaxing these assumptions.

PICO: Primitive Imitation for COntrol

References

www.clearpathrobotics.com/
husky-unmanned-ground-vehicle—-robot/.

Accessed: 2019-09-10.

www.universal—-robots.com. Accessed: 2019-09-
10.

Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., and
Allen, P. Task level hierarchical system for bci-enabled
shared autonomy. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pp.
219-225, Nov 2017. doi: 10.1109/HUMANOIDS.2017.
8246878.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In Proceed-

ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 166—175. IMLR. org, 2017.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N.
Learning to learn by gradient descent by gradient descent,
2016.

Argall, B., Chernova, S., Veloso, M., and Browning, B. A
survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469 — 483, 2009. ISSN
0921-8890. doi: https://doi.org/10.1016/j.robot.2008.10.
024. URL http://www.sciencedirect.com/
science/article/pii1/S0921889008001772.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a
synaptic learning rule. IJCNN-91-Seattle International
Joint Conference on Neural Networks, 01 2002. doi:
10.1109/1JCNN.1991.155621.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of
Artificial Intelligence Research, 13:227303, Nov 2000.
ISSN 1076-9757. doi: 10.1613/jair.639. URL http:
//dx.doi.org/10.1613/jair.6309.

Duan, Y., Andrychowicz, M., Stadie, B., Ho, J., Schneider,
J., Sutskever, 1., Abbeel, P., and Zaremba, W. One-shot
imitation learning. In Advances in neural information
processing systems, pp. 1087-1098, 2017.

Finn, C., Abbeel, P, and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126—1135. JMLR. org, 2017.

Graves, A., Fernandez, S., Gomez, F., and Schmidhuber,
J. Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks.
In Proceedings of the 23rd international conference on
Machine learning, pp. 369-376. ACM, 2006.

Hussein, A., Gaber, M., Elyan, E., and Jayne, C. Imi-
tation learning: A survey of learning methods. ACM
Comput. Surv., 50(2):21:1-21:35, April 2017. ISSN 0360-
0300. doi: 10.1145/3054912. URL http://doi.acm.
org/10.1145/3054912.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural Computation,
3:79-87, 1991.

Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez,
A., Grefenstette, E., Kohli, P., and Battaglia, P. Com-
pILE: Compositional imitation learning and execu-
tion. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pp. 3418-
3428, Long Beach, California, USA, 09-15 Jun
2019. PMLR. URL http://proceedings.mlr.
press/v97/kipfl9a.html.

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A.
Robot learning from demonstration by constructing skill
trees. The International Journal of Robotics Research, 31
(3):360-375, 2012.

Kulkarni, T., Narasimhan, K., Saeedi, A., and Tenenbaum,
J. Hierarchical deep reinforcement learning: Integrat-
ing temporal abstraction and intrinsic motivation. In

Advances in neural information processing systems, pp.
3675-3683, 2016.

Laskey, M., Lee, J., Fox, R., Dragan, A., and Goldberg, K.
Dart: Noise injection for robust imitation learning, 2017.

Mu, T., Goel, K., and Brunskill, E. Plots: Procedure learning
from observations using subtask structure. In Proceed-
ings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1007-1015. Interna-
tional Foundation for Autonomous Agents and Multia-
gent Systems, 2019.

Rusu, A., Colmenarejo, S., Gulcehre, C., Desjardins, G.,
Kirkpatrick, J., Pascanu, R., Mnih, V., Kavukcuoglu, K.,
and Hadsell, R. Policy distillation, 2015.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. One-shot learning with memory-augmented
neural networks, 2016.

Schaal, S. and Atkeson, C. Learning control in robotics.
IEEE Robotics & Automation Magazine, 17(2):20-29,
2010.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. CoRR, abs/1701.06538, 2017. URL http://
arxiv.org/abs/1701.06538.

www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
www.clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
www.universal-robots.com
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://dx.doi.org/10.1613/jair.639
http://dx.doi.org/10.1613/jair.639
http://doi.acm.org/10.1145/3054912
http://doi.acm.org/10.1145/3054912
http://proceedings.mlr.press/v97/kipf19a.html
http://proceedings.mlr.press/v97/kipf19a.html
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/1701.06538

PICO: Primitive Imitation for COntrol

Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., and
Posner, 1. Taco: Learning task decomposition via tempo-
ral alignment for control. In International Conference on
Machine Learning, July 2018.

Stolle, M. and Precup, D. Learning options in reinforcement
learning. In Abstraction, Reformulation, and Approxima-
tion, pp. 212-223, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. ISBN 978-3-540-45622-3.

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., and
Savarese, S. Neural task programming: Learning to gen-
eralize across hierarchical tasks. In IEEFE International
Conference on Robotics and Automation, pp. 1-8. IEEE,
2018.

Zhao, J., Li, W., Mao, X., Hu, H., Niu, L., and Chen,
G. Behavior-based ssvep hierarchical architecture for
telepresence control of humanoid robot to achieve full-
body movement. IEEE Transactions on Cognitive and
Developmental Systems, 9(2):197-209, June 2017. doi:
10.1109/TCDS.2016.2541162.

PICO: Primitive Imitation for COntrol

A. APPENDIX

A.1. Overview

Unlabeled demonstrations Gapped annotation with known behaviors

\ 4

1\l

Primitive Behavior Library Proposal of new behavior primitive

Figure 4. An overview of PIC'O. The approach takes as input unlabeled demonstrations and a library of primitive behaviors. The goal is
to predict the primitive behavior label associated with each time point in all demonstrations. Additional behavior primitive models can be
trained to fill gaps that are not well represented by existing behavior primitives.

A.2. Additional Related Work

In meta-learning a model is trained on a variety of learning tasks and the parameters of the method are fine-tuned for
generalization. The idea of meta-learning is to combine a set of learner models to improve performance on a task more
quickly than one without pretrained models. This is a common strategy for one-shot (Santoro et al., 2016) or few shot
scenarios, where a model must be trained using one or a few examples. Some approaches for meta-learning come from
the reinforcement learning (Finn et al., 2017), which typically differ in how they update individual learners. Some meta-
learning methods update models using gradient information (Finn et al., 2017) and others learn how to update learners from
data (Andrychowicz et al., 2016; Bengio et al., 2002).

Imitation learning alone does not provide a mechanism to generalize demonstrations to new tasks. One mechanism to
address this challenge is task decomposition, which has the goal of identifying subtasks from demonstration. Subtasks can
be made into sub-policies through imitation learning, including methods methods that combine subtask discovery with
imitation learning (Shiarlis et al., 2018; Xu et al., 2018). By decomposing demonstrations into subtasks, it becomes possible
to permute the sequence of sub-policies to achieve greater task diversity and generalizability. However, decomposing
demonstrations into subtasks that are maximally useful for recombination is a challenge in task decomposition (Shiarlis
etal., 2018).

Once sub-task policies are established, a hierarchical control policy can be learned that identifies the sequence of policies
needed to achieve a specified goal. Given a sufficiently diverse set of demonstrations the reasoning layer can be learned
from a set of demonstrations (Xu et al., 2018). Several approaches for learning hierarchical architectures for control policies
from limited demonstrations have been proposed (Shiarlis et al., 2018; Xu et al., 2018; Duan et al., 2017).

Some approaches assume that the behavior primitive library is fully trained in advance (Xu et al., 2018). In the reinforcement
learning domain, the options framework (Stolle & Precup, 2002; Andreas et al., 2017; Kulkarni et al., 2016) and hierarchical
reinforcement learning (Dietterich, 2000) are common approaches for organising hierarchies of policies. The techniques in
reinforcement learning are often predicated on being able to interact with an environment and collect a lot of data. In this
work, we focus on learning hierarchical task decomposition strategies from a limited set of demonstrations.

A.3. Reducing the impact of covariate shift

Following optimization, covariate drift can cause errors in the control process that can place the robot in a previously
unobserved state. Control policies will have higher action prediction errors in parts of the state space that it has not observed,
leading to poor action predictions and compounding errors with increased iterations of the policy. One approach that has been
introduced to decrease the impact of covariate shift is to introduce noise into the demonstrations used for learning (Laskey
et al., 2017). This approach increases the amount of state space covered by the policy and improves action predictions
around the demonstrations, leading to better generalization and error tolerance.

PICO: Primitive Imitation for COntrol

A.4. Related Approaches for Comparison

In this section we describe the approaches most closely aligned with our work referred to as CTC (Graves et al., 2006) and
TACO (Shiarlis et al., 2018).

A.5. Task Sketch for Sub-policy Discovery

Some related approaches (Andreas et al., 2017; Mu et al., 2019) perform demonstration decomposition by combining both
demonstrations and task sketches. The literature refers to these approaches as weakly-supervised because the order of tasks
is given and the exact transition points within a demonstration must be inferred.

Let D be our dataset containing trajectories p = ((so,ao), (s1,01),...,((s7,ar)) of length T containing state-action
tuples (s, a) for state s and action a. A task sketch 7 = (71, 7o, ..., 77) is a sequence of sub-tasks labels where L is the
length of the sketch. A path is a sequence of sub-task labels ¢ = ({1, o, - . ., (r) where T is the length of a demonstration.
We assume that L. << T'. We say that a path ¢ matches a task sketch 7 if 7 = (after removing all adjacent duplicate
sub-tasks in ¢. For example, the path (7, 7, 7o, w3, 73, 71, 71, 71, 71) matches the task sketch (g, w3, 71).

Connectionist Temporal Classification Given a dataset D and task sketch 7, one approach to obtain a set of generalizable
sub-tasks B is to separately learn alignment of trajectories to the task sketch then learn the control policies for sub-tasks
with behavior cloning. Connectionist Temporal Classification (CTC) (Graves et al., 2006) addresses the problem of aligning
sequences of dissimilar lengths. There are potentially multiple ways in which a path could be aligned to a task sketch. Let
Z (1) be the set of all paths of length 7" that match the task sketch 7. The CTC objective maximises the probability of the
task sketch 7 given the input trajectory p:

0* = arggnax E(p,)[po(7[p)] ©
T

0" = argmaxE, | Z HPO(Cta lpt)])
o CE€Z(r, 7y t=1

po(Ct, |p) is commonly represented as a neural network with parameters 6 that outputs the probability of each sub-task
policy in B. The objective is solved efficiently using dynamic programming. Inference using the neural network model is
used to find a maximum likelihood path (for a trajectory p. The labels in ¢ provide an association between state-action
tuples (s¢, a;) and subtask policies w € 3. The state-action policies associated with a single sub-task are used to create a
sub-task policy using behavior cloning.

Temporal Alignment for Control Given a demonstration p and a task sketch 7, Temporal Alignment for Control
(TACO) (Shiarlis et al., 2018) will learn where each subtask begins and ends in the trajectory and simultaneously trains
a library of sub-tasks policies B. TACO maximizes the joint log likelihood of the task sequence 7 and the actions from
sub-task policies contained in B conditioned on the states. Let a, and s, be the set of actions and states respectively in
trajectory p.

T
p(r,agls,) = > p(Cls,) [] e, (alse) ®)

CEZL(T,r) t=1

where p((|s,) is the product of action probabilities associated with any given path ¢. The path (determines which data
within p corresponds to each sub-task policy 7 and Hthl ¢, (a¢]s¢) is the behavior cloning objective from Equation 1.

A.6. Domains

As an example of this scenario, consider a Universal Robots URS5 (UR) manipulator mounted on a Clearpath Husky
platform (Hus) as shown in Fig. 1(a). The URS is used to demonstrate reaching, grabbing, and lifting a block on a table.
Other tasks may require performing these actions in another order, so it may be useful to learn and maintain a collection of
these primitive behaviors for later use. While the underlying behavior primitives are well defined for the reach-and-grasp

PICO: Primitive Imitation for COntrol

scenario, other example scenarios may not have as well defined or labeled primitives. In this work, we assume that the
underlying label of the behaviors shown in the task demonstrations is unknown.

A.7. Reconstruction from existing primitives

Our initial experiment is an ablation study that separately evaluates the estimate of the primitive behavior probability
distribution and the action predictions from learning behavior primitives. We train and freeze behavior primitive models
for reach, grasp, and lift using the ground truth labeled data from trajectories. We evaluated PICO, TACO (Shiarlis et al.,
2018), and CTC based on label classification accuracy. For Taco and CTC we additionally compared the methods using
MLP and RNN based underlying network models. We evaluated all methods based on an 80/20 split of demonstrations into
training and test sets. The average of five independent runs were obtained for each approach. In Table 1, we show the results
of the comparison. As shown in the sample trajectory in Figure 5(b), the label prediction of the trained model closely aligns
with the ground truth label from the example trajectory.

0 20 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

(a) Sample trajectory label accuracy (b) Missing primitive label accuracy

Figure 5. Example behavior primitive label accuracy for a single test demonstration. We compared the label predictions given by PICO
(red) to the ground truth (blue) (a) A sample reconstruction for a single trajectory with an existing behavior primitive library. Timepoints
are on the x-axis. and behavior primitive label is on they y-axis. The labels 0,1, and 2 correspond to reach, grasp, and lift respectively. (b)
Reconstruction of an example trajectory and discovery of a missing behavior primitive (grasp).

Figure 5(a), shows a comparisons between between the predicted label based on Equation 5 and the ground truth label. Over
all trajectories in the test set, the average label classification accuracy was 96% compared to the ground truth label. The
summary of results are shown in Table 1.

A.8. Visualizing the Learned Latent Space

To better understand the role of the embedding space for predicting the primitive probability distribution, we visualized
the embedding of all states vectors from the test set in the recurrent hidden layer. We would expect that a useful latent
embedding would naturally cluster states that correspond to different primitives into distinct locations in the embedding
space. Figure 6 shows layout of the latent space in two dimensions. Each point corresponds to a state vector from the test

Figure 6. The organization of the learned latent space associated with the Husky-URS dataset for reach, grasp, and lift (red, green, and
purple respectively).

PICO: Primitive Imitation for COntrol

dataset. The points are colored by the ground truth label.

A.9. Additional Discussion

For the dialpad dataset, label prediction accuracy is a challenging metric without a task sketch because the starting position
of the jaco may not provide clues about which button will be pressed. As the jaco gets closer to a button, it becomes more
clear which button will be pressed.

Also of note, we compare our results to TACO which is a weakly supervised approach. TACO is given the ordering of tasks.
For task sequences of length 4, this means that a random baseline would be expected to achieve an accuracy of 25%. For an
unlabeled approach like PICO, any of the 10 behavior primitives could be selected at each timepoint. This means that
unlabeled demonstrations the expected accuracy of a random baseline would be 10%.

