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Abstract

Collaborative inference has received significant
research interest in machine learning as a vehicle
for distributing computation load, reducing la-
tency, as well as addressing privacy preservation
in communications. Recent collaborative infer-
ence frameworks have adopted dynamic inference
methodologies such as early-exit and run-time
partitioning of neural networks. However, as ma-
chine learning frameworks scale in the number of
inference inputs, e.g., in surveillance applications,
fault tolerance related to device failure needs to be
considered. This paper presents the Edge-PRUNE
distributed computing framework, built on a for-
mally defined model of computation, which pro-
vides a flexible infrastructure for fault tolerant
collaborative inference. The experimental section
of this work shows results on achievable inference
time savings by collaborative inference, presents
fault tolerant system topologies and analyzes their
cost in terms of execution time overhead.

1. Introduction
Since a few years already, the execution of machine learn-
ing workloads has been moving from servers and the cloud
to less powerful platforms, such as embedded and mobile
devices. A considerable hindrance to this progress has been
the significant computation load of machine learning in-
ference, especially related to deep neural network (DNN)
architectures. In order to match neural network complex-
ity with computation platform resources, several different
approaches have been developed: lightweight architectures
such as MobileNets (Howard et al., 2017) attempt to main-
tain high inference accuracy despite drastically reduced
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Figure 1. An example of a surveillance camera system with fault
tolerance achieved by redundant nodes. The interconnection pat-
tern equals to a K2,4 complete bipartite graph, where 2 is the
number of edge servers and 4 is the number of endpoint devices.

number of trainable parameters; post-hoc optimizations such
as dense layer pruning (Zhu & Gupta, 2018), separable con-
volutions (Jaderberg et al., 2014) and weight quantization
(Courbariaux et al., 2016) reduce inference time by approx-
imating the original trained neural architecture, whereas
neural accelerators (Skillman & Edsö, 2020; Han et al.,
2016) leverage specialized hardware to speed up inference.

Orthogonal to the aforementioned techniques, distributed
and collaborative inference have emerged as a notable
branch of research. In these approaches, the neural network
inference workload is distributed between low-resource end-
point devices and high performance edge servers (or the
cloud); early milestone works of this direction are Neuro-
surgeon (Kang et al., 2017) and DDNN (Teerapittayanon
et al., 2017). In conjunction with collaborative inference,
several dynamic neural network techniques have been suc-
cessfully adopted: for instance, early-exit (Teerapittayanon
et al., 2017) can terminate inference at intermediate layers
saving on communication bandwidth, whereas dynamic on-
loading (Almeida et al., 2021) decides at runtime the target
execution platform of DNN layers.

Collaborative inference can be used to target a variety of
optimization objectives: reducing endpoint device computa-
tion load, end-to-end latency optimization, energy reduction
or server workload reduction. A less frequently mentioned
by-product of collaborative inference is privacy preservation.
This topic has been extensively studied in (He et al., 2019),
where key observations point out that malicious model inver-
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sion attacks against collaborative inference are significantly
less effective if they cannot access the feature vectors pro-
duced by the early neural network layers – especially if
inference has passed one or more dense layers of the DNN.
In terms of collaborative inference this means that the end-
point device should perform the inference of as many early
DNN layers as possible before transmitting the intermediate
feature vectors over a network interface to server processing.

This paper addresses the topic of collaborative inference,
especially from the point of multiple inference inputs and
system fault tolerance. An example scenario for multi-input
collaborative inference is a smart surveillance camera sys-
tem (see Figure 1), where several smart cameras have been
deployed across a site for performing object detection and/or
tracking. For privacy preservation, the smart cameras per-
form the inference of early DNN layers, and transmit the
intermediate feature vectors to a local edge server for com-
pleting the inference.

In safety critical areas, node (endpoint device or server)
failures related to malicious actions or hardware faults needs
to be taken in account. Concretely, the surveillance system
should be able to continue its operation if one or more of
the endpoint devices become disabled, or even in the more
severe case of server failure. Figure 1 illustrates a highly
redundant configuration, where a single failure of any kind
of resource (endpoint device, server or connection) does not
incapacitate the overall system. Such redundancy evidently
comes with a price, which in this case is the redundant server
and the related connectivity.

This study, related to fault tolerant collaborative inference, is
realized around the open source1 Edge-PRUNE framework
(Boutellier et al., 2022b). Edge-PRUNE is based on a for-
mally defined model of computation, and provides the nec-
essary theoretical infrastructure for specifying and design-
ing collaborative inference between one or more endpoint
devices and servers. Besides the theoretical basis, the Edge-
PRUNE framework includes a self-sustained runtime engine
that is hardware and training framework agnostic, provid-
ing a software environment for both endpoint devices and
servers. Although not detailed in this work, Edge-PRUNE
also has inherent support for conditional computing.

2. Related Work
Significant early works on collaborative inference were
DDNN (Teerapittayanon et al., 2017) and Neurosurgeon
(Kang et al., 2017). DDNN proposed distributing inference
across endpoint, edge and cloud resources, also introducing
early exits for reducing communication. Neurosurgeon, on
the other hand, presented a scheduler for intelligently dis-
tributing neural network layers across endpoint and server

1Available at https://gitlab.com/jboutell/vprf/-/tree/edge-prune

resources. Edgent (Li et al., 2018a) further developed Neu-
rosurgeon’s concept by introducing DNN right-sizing, joint
optimization of early exits and DNN partitioning. Edgent
later evolved into Boomerang (Zeng et al., 2019) inspired by
the early exit mechanism of BranchyNet (Teerapittayanon
et al., 2016). IONN (Jeong et al., 2018) also continued in
the vein of Neurosurgeon, however based on the offloading
concept: the endpoint device can upload DNN partitions
to an edge server for optimizing mobile device energy con-
sumption, among other optimization goals. Similar to Neu-
rosurgeon, also IONN is based on Caffe (Jia et al., 2014).
Recently, SplitNets (Dong et al., 2022) combined neural
architecture search with multi-input partition point search.

JointDNN (Eshratifar et al., 2019) introduced a directed
acyclic graph (DAG) based model for DNN partitioning,
optimizing for energy and latency. Besides partitioning,
JointDNN also considers layer compression, similar to the
preceding work JALAD (Li et al., 2018b), and the recent
supervised compression work (Matsubara et al., 2022). A
graph-based modeling approach is also adopted by DADS
(Hu et al., 2019), the industrial effort Auto-Split (Banitalebi-
Dehkordi et al., 2021) and D3 (Zhang et al., 2021), enabling
capturing of branched DNN topologies as opposed to sim-
pler chain-like DNN structures. Finally, SPINN (Laskaridis
et al., 2020) and DynO (Almeida et al., 2021) contribute
to dynamic DNN partitioning, which is useful under, e.g.,
varying wireless network conditions.

An orthogonal approach to endpoint-server computation par-
titioning is taken by (Mao et al., 2017b;a; Zhao et al., 2018;
Gao et al., 2021) that propose partitioning DNN inference
across multiple endpoint devices.

3. The Edge-PRUNE Framework
The Edge-PRUNE framework used in this study signifi-
cantly differs from the related works in the sense that it
is based on a formal model of computation. The overall
computation scheme of Edge-PRUNE is dataflow, simi-
lar to that of TensorFlow (Abadi et al., 2016). However,
Edge-PRUNE goes further in computation modeling, by
formalizing concepts such as data packaging, data rates,
triggering of computations, and necessary conditions for
deadlock-free conditional computations.

3.1. Model of Computation

The Edge-PRUNE framework relies on the VR-PRUNE
model of computation (Boutellier et al., 2022a). In VR-
PRUNE, a neural network is described as a directed graph
G = (A,F ), where the actors A represent vertices that
perform computation, such as inference of a DNN layer. The
links F of graph G represent first-in-first-out (FIFO) buffers
that carry data between actors. For each link f ∈ F , data is
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quantized into fixed-size tokens that in the neural network
context can be understood as feature vectors between layers.
A FIFO f ∈ F is connected to an actor a ∈ A through a
port pa, such that fifo(pa) = f .

An actor a ∈ A can fire (perform a computation) when it
has a sufficient number of input tokens available. To specify
the required number of tokens, for each input port pa of
actor a, a non-negative integer-valued token rate atr(pa)
is defined; once each input port of a has at least atr(pa)
number of tokens in the associated FIFO buffer fifo(pa),
actor a becomes enabled, that is, ready to fire. The exact
moment in time when an enabled actor fires can depend, for
instance, on availability of compute resources. As dataflow
models in general, also VR-PRUNE is inherently concur-
rent: individual actors can execute in parallel, independent
of others (Lee & Messerschmitt, 1987).

The VR-PRUNE model of computation balances between
expressiveness and analyzability: while being expressive
enough for allowing conditional computations, the model
simultaneously provides means for analyzing graph consis-
tency. The following subsection illustrates how conditional
computation is expressed using VR-PRUNE concepts.

3.2. Conditional Computation

In order to maintain analyzability against graph deadlock
and/or buffer overflow, the VR-PRUNE model restricts con-
ditional computation to take place within dynamic process-
ing (sub)graphs, DPGs: within a DPG, conditional compu-
tation can be realized between two dynamic actors. Figure 2
shows a minimal case of a DPG: the dynamic actor x pro-
vides a control signal (dashed connection) that at run time
sets the input and output token rates of the dynamic actor y
and the dynamic processing actor a. The range of allowed
token rates and associated actor ports is expressed in the
control table T of Figure 2: port pxc dynamically sets the
token rate of ports px1, pa1, pa2 and py1 to either 0 or to 1.
With token rates set to 1, a becomes enabled, whereas token
rate 0 disables execution of a. Actor b does not receive such
a control signal and thus maintains static token rates.

3.3. Distributed Computing and Fault Tolerance

The Edge-PRUNE framework enables concurrent execution
of actors both within a computing platform, and between
computing platforms using a mapping specification. Within
a platform, each actor a ∈ A is mapped for execution to
a specific CPU core, or to the local GPU. The same map-
ping specification is also used to set the execution platform
(endpoint device or server) of each actor. To this extent,
Edge-PRUNE provides mapping exploration functionality,
which auto-generates endpoint-server mapping alternatives
for discovering the best DNN partition point for collabora-
tive inference.
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Figure 2. An Edge-PRUNE dynamic processing graph example.

The Edge-PRUNE mapping specification allows general-
izing distributed computing also to system configurations
that consist of one or more endpoint devices and/or servers,
e.g., for achieving fault tolerance. From the dataflow model
viewpoint, computing node malfunction means that either a
subgraph of G ceases to produce tokens (endpoint failure),
or a subgraph of G stops consuming tokens (server failure).
Maintaining operation for the remaining system requires
that the dataflow application needs to overcome such un-
expected subgraph failures without ending up in deadlock.
Currently, Edge-PRUNE implements fault tolerance on the
dataflow graph level, whereas extending the fault tolerance
behavior to model-based graph consistency analysis remains
a prospective for future work.

3.4. Inference Engine

The Edge-PRUNE computing functionalities have been im-
plemented in the C language to a lightweight runtime library
for Linux-based platforms, enabling deployment to embed-
ded devices as well as to servers. This inference engine is
independent of neural network training frameworks (e.g.,
TensorFlow), but allows leveraging DNN acceleration li-
braries such as Intel oneDNN or ARM CL. Edge-PRUNE
has deeply inbuilt support for GPU leverage, but can equally
well operate on GPU-less platforms. Distributed computing
functionality has been implemented using Linux Sockets,
such that the endpoint devices are expected to establish
an ssh connection to the server(s), delegating data secu-
rity issues to the level of ssh connections. Fault tolerance
functionality is implemented on the actor port level: ports
responsible for inter-platform communication monitor and
adjust to remote platform liveness by Linux socket error
conditions: broken pipe, connection reset, no data sent. Fi-
nally, Edge-PRUNE does not constrain the nature (wired or
cable) or number (shared or point-to-point) of connections
between endpoints and servers.

4. Experiments
4.1. Collaborative Inference Partition Point Exploration

Figure 3 shows endpoint device inference time for the SSD-
MobileNet v1 (Howard et al., 2017; Liu et al., 2016) ob-
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Figure 3. Collaborative inference partition point exploration for
SSD-MobileNet v1 (300×300 input) under Edge-PRUNE. Bars
reflect endpoint inference + communication time (blue: 100 Mbit
Ethernet, red: 16 Mbit WiFi); horizontal dashed line is endpoint-
only inference time (all per 1 frame).

ject detection CNN in a collaborative inference scenario
where an ODROID N2 single-board computer (Hexacore
ARM+GPU) acts as the endpoint device, and an Intel Core
i7-8650U based platform as the edge server, interconnected
by 100 Mbit Ethernet or 16 Mbit WiFi. The full-precision
CNN (32 bit float) is implemented as an Edge-PRUNE ap-
plication such that each Conv-BNorm-ReLU layer triplet
is wrapped inside a dedicated actor, forming a graph of
53 actors and 69 links. Endpoint device inference time
was explored by shifting the endpoint/server partition point
actor-by-actor from inference input towards inference out-
put, resulting in Figure 3. The graph shows that partition
points 13 and 14 provide minimal endpoint inference time,
6.0× higher than endpoint-only inference. On the endpoint
device, the CNN layers inside Edge-PRUNE actors were
implemented using ARM Compute Library functions.

4.2. Inference Time and Fault Tolerance

Both virtual and physically distributed system configura-
tions were used validate Edge-PRUNE collaborative infer-
ence and system behavior on computing node failures.

Virtual environment. Table 1 illustrates performance scal-
ing of Edge-PRUNE collaborative inference for single and
dual-server configurations with 1 ≤ n ≤ 6 endpoint de-
vices and complete bipartite graph Km,n interconnection
topology. Per-frame processing time was measured in a
virtual distributed environment: each endpoint process and
each server process was assigned to a dedicated core on
the 8-core Intel Core i7-8650U processor, and connections
between endpoints and servers were handled over the Linux
loopback network interface, which allowed using exactly
the same server and endpoint software configurations as in
a physically distributed system. Each endpoint performed

Table 1. Vehicle image classification collaborative inference time
per frame in milliseconds for 1 ≤ m ≤ 2 servers and 1 ≤ n ≤ 6
endpoint devices. Upper half: endpoint, lower half: server.

N. OF ENDPOINTS 1 2 3 4 5 6

SINGLE-SERVER 4.7 4.9 5.2 5.4 6.2 7.0
DUAL-SERVER 4.9 5.1 5.2 5.5 6.3 7.1

SINGLE-SERVER 4.8 5.7 6.5 7.1 8.7 9.7
DUAL-SERVER 4.9 5.8 6.5 7.1 8.9 9.6

the inference of 7 initial layers (Conv2D-ReLU-MaxPool-
Conv2D-ReLU-MaxPool-Dense) of a vehicle classification
CNN (Xie et al., 2016), whereas each server process per-
formed the inference of the last 5 layers of the same CNN.
The 7 CNN layers of each endpoint subgraph were realized
into 4 actors, whereas the 5 layers of the server subgraph
were wrapped inside a single actor; therefore the largest
K2,6 configuration consisted of 26 actors and 30 FIFOs. On
the endpoint side, Conv2D layer inference was implemented
by the Intel oneDNN library. Table 1 shows: a) adding a
second server for fault tolerance causes insignificant pro-
cessing time overhead, and b) adding an endpoint increases
per-node inference time by 11% on average. Endpoint and
server fault behavior was observed by abrupt termination
of endpoint/server processes, showing that the remaining
system continues collaborative inference as expected.

Heterogeneous distributed system. To confirm Edge-
PRUNE collaborative inference functionality and behav-
ior on node fault on a physically distributed system, K1,2

and K2,1 configurations were established using a heteroge-
neous set of nodes: an Intel Core i7-8650U workstation, an
ODROID N2, and an Intel Atom N270 based platform, all
running Ubuntu Linux, and interconnected over 100 Mbit
Ethernet. Using the same vehicle classification CNN (Xie
et al., 2016), the heterogeneous configuration was used to
validate that a) Edge-PRUNE recovers from communication
breaks (temporarily disconnected cable), and b) maintains
operation on permanent node failure (server power-down
for K2,1 and endpoint power-down for K1,2).

5. Conclusion
In this work the topic of collaborative inference fault tol-
erance was studied for configurations consisting of one or
more network-connected edge servers and one or more end-
point devices. The experimental study was done using the
Edge-PRUNE framework, which was shown to scale suc-
cessfully with an increasing number of endpoint devices
and/or edge servers, and furthermore was shown to be capa-
ble of continuing operation after computing node failure.
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