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Abstract

Computing the product of a kernel matrix and a vector is the
most basic and important operation in high-performance ma-
chine learning and scientific computing. The speed for this
calculation determines plays a critical role in the overall perfor-
mance of machine learning training and inference. As dataset
sizes rapidly increase, the dimension of the kernel matrix also in-
crease accordingly, and this product computation is increasingly
a performance bottleneck. In the meantime, our observation is
that many popular kernel matrices are inherently sparse, due
to natural data distributions. In this paper, we design an efficient
data structure to approximate kernel matrix vector multiplication.
Our data structure is a search tree which enables us to quickly
extract those entries and calculate the multiplication results.

Motivation

Kernel method is an important class of machine learning tech-
niques. It is widely used in classification, deep neural networks,
and computer vision. When using the kernel method, we often
need to compute the product of a kernel matrix and a vector.
The speed for this computation determines the overall perfor-
mance of the higher level machine learning and scientific com-
puting tasks.
The dimension of the kernel matrix is the same as the size of the
dataset. Modern dataset has increasing numbers of samples.
This makes the calculation of a kernel matrix and a vector in-
creasingly slow. In the meantime, our observation is many data
distributions naturally lead to sparse kernel matrices. For exam-
ple, when data are clustered around several locations, the entry
in the kernel matrix is non-negligible if only if the corresponding
data points are in the same cluster. This raises an important
question:
Can we speed up the kernel matrix vector multiplication time for

sparse kernel matrices?

Technique

Our approach uses an efficient search tree data structure de-
sign. The search tree enables us to quickly locate non-negligible
entries in a large kernel matrix. During the multiplication, we
simply omit negligible entries to speed up the matrix vector com-
putation. This approach enables us to compute the kernel vec-
tor multiplication efficiently when the kernel entries are highly
sparse. This truncated matrix vector multiplication is motivated
by activation functions like ReLU which sets the output as zero
if the corresponding input values do not surpass certain thresh-
old.

We define the truncated matrix vector multiplication in Defini-
tion 1.

Definition 1 (Truncated Matrix Vector Multiplication) Given
x1, · · · , xn ⊂ Rd and y1, · · · , ym ⊂ Rd. We define matrix
K ∈ Rn×m as follows:

Ki,j := f (xi, yj).

For any query vector v ∈ Rm, a truncation threshold τ and an
index i ∈ [m], the goal is to compute

m∑
j=1

vj · Ki,j · 1⟨xi,yj⟩≥τ ,∀i ∈ [n]

As shown in Figure 1, we use a max binary search tree to pre-
process all the entries of kernel matrix K based on the inner
product ⟨xi, yj⟩. Given a vector v ∈ Rm, a truncation threshold
τ an index i ∈ [m], the data structure can identify the indexes of
kernel entries which surpass the trucation threshold in logarith-
mic time via a parallel search from tree root down to the leaves.

Fig. 1: Max binary tree search structure example

Our Results

We present our main theorem as follows:

Theorem 2 (Main Theorem) Assume the time complexity of
evaluating f (x, y) is Tf . There exists a data structure which
uses O(mn+ d(m+ n)) spaces and supports the following op-
erations:

• INIT(y1, y2, · · · , ym ∈ Rd, x1, x2, · · · , xn ∈ Rd). Given
y1, y2, · · · , ym ∈ Rd and n data points x1, x2, · · · , xn ∈ Rd,
the time complexity of INIT operation is O(mn(d + Tf)).

• UPDATE(z ∈ Rd, j ∈ [m]). Given z ∈ Rd and an index j ∈ [m],
the UPDATE operation runs in O(n(d + log(m) + Tf)) time.

• QUERY(i ∈ [n], τ ∈ R). Given an index i ∈ [n] and a thresh-
old τ ∈ R as input and let Ki denote the number of entries of
above τ in tree Ti, the QUERY operation runs in O(Ki log(m))
time and output a set containing all yj such that ⟨xi, yj⟩ ≥ τ
in tree Ti.

• MULTIPLY(v ∈ Rm, τ ∈ R), Given a vector v ∈ Rd and
a threshold τ ∈ R as input, and let Ki denote the num-
ber of entries of above τ in each tree Ti, MULTIPLY outputs
the result of truncated matrix vector multiplication K · v in
O(

∑n
i=1Ki log(m)) time.

Evaluation

We evaluate our algorithm with n = 2048, d = 64 and m = 2048 randomly
generated data points {xi}ni=1 and {yj}mj=1, where {xi}ni=1 are generated
by 32 random clusters and each cluster contains 64 data points.
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Fig. 2: Speedup under different truncation percentage.

We find that MULTIPLY achieves 8.33× speedup compared with truncat-
ing each kernel entry with threshold sequentially. This speedup comes
from efficiently locating the kernel indexes in logarithmic time for trun-
cated kernel multiplication.
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Fig. 3: L1 and L2 norm error rates under different truncation degrees. (1) Gaussian. (2) TStudent. (3)

Polynomial. (4) Tanh.

For Gaussian, T-student and kernels, our MULTIPLY can achieve < 10%
L1 norm error rate and < 40% L2 norm error rate when the truncation
percentage is larger than 3.0%. For Polynomial kernel, our MULTIPLY can
achieve < 2% L1 norm error rate and < 20% L2 norm error rate when the
truncation percentage is larger than 3.0%. When the truncation percent-
age drops below 3.0%, the L1 and L2 error rates increase sharply as the
truncation percentage decreases. This is because MULTIPLY leverages
less kernel entries to compute the multiplication which yields to lower
accuracy.
For Tanh kernel, our MULTIPLY yields to bad multiplication accuracy com-
pared to the non-truncated matrix-vector multiplication.


