Theorem 3 Let f is Stary estimator for F = F (L,p,s). The following ex-
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pectation bound on excess loss holds:
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where C5 depends only on the complexity of the class of neural networks F.
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pendently and averaging (Ensemble), learning blocks sequentially us-

Introduction We have a S, = (X, Y;)’_, sample of i.i.d. input-output ing the snapshot technique with subsequent averaging (Snap Ensemble).

pairs (X;,Y;) € X x Y distributed according to some unknown distribution

Name d MSE MAE R?
P. We also chose a certain family of predictors F. Our goal is to build a
new predictor f (which may not lie in F) minimizing the excess risk &, but 2225 Et]asremble g 1222;f8212 ;g(z)z ggg;
in practice we can only calculate the empirical risk r (which depends on Ensemble 5 12.568+0.878 2.399 0.849
the Sample Sn ) . Big NN 5 12.068i0.860 2.411 0.855
~ . _ S St 4 11.276+x0.582 2.269 0.865
£9) =E@-Y) =~ nf B(F =Y. r(@) =70 @) Y% (1 : : §2§E Ensemble 4 1181980341 2316 0.858
| e The picture is taken from paper [2]. The
To solve this problem, we propose the following Star, procedure: . . . . Ensemble 4 12.059+0.614 2.365 0.855
oy . method consists in changing /r cyclically and Big NN 4 12.556+0.904 2.383 0.849
1) Get d empirical risk minimizers {g;} _, using snapshot technique [2]. gettlng intO Several IOcaI Optima during the
2) Find empirical risk minimizer  on set 5tary(6: . - Ga): entire training, the weights of which are saved Table 1: Boston Housing Dataset (30 epochs)
Stara(dy...9a) = | J Conv(@: ... Ga. ) for further construction of the ensemble. v y
gt ame accuracy entropy
The model built in this way combines the fast order of the Audibert star Snap Star 3 0.900+0002 0 284+0.008
procedure [1], the power of the ensemble of models, and the budget con- Snap Ensemble 3 0.897+0.003 0.290+0.009
struction of the snapshot technique. We also take into account that min- Sta r p rO Ce d u re Ensemble 3 0.887+0.001 0.310£0.005
Big NN 3 0.890£0.010 0.299+£0.022
imization is performed inaccurately in practice. Errors from the first and d 5
second steps we denote as A; and A, respectively. P 2:22 éfwasremble g 82;1?8882 ggggfgggg
Theoretical results We focused on the class of sparse fully connected Ensemble 2 0886+0004 0.313+0.008
neural networks F(L, p, s) defined in [4]. Continuing the technique of Big NN 2 0.892+0.003 0.304+0.007/

Liang et al. [3] we have obtained the fast order for excess risk both in the
Table 2: Fashion Mnist Dataset (5 epochs)

sense of expectation and in the sense of deviation. . o -
Conclusion We have proved the optimality and stability of Star, proce-

Definition 1 (Lower Isometry Bound)  Class 7 satisfies the lower isometry dure for MSE minimization in a class of sparse neural networks. In practice,

bound with some parameters 0 <n < 1land0 <o <1If we were convinced of its performance for other tasks and types of neural
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networks.

for all n > no(F,d,m), where no(F,d,n) depends on the complexity of the
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