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Introduction We have a Sn = (Xi , Yi)ni=1 sample of i.i.d. input-output
pairs (Xi , Yi) ∈ X ×Y distributed according to some unknown distribution
P . We also chose a certain family of predictors F . Our goal is to build a
new predictor f̂ (which may not lie in F ) minimizing the excess risk E , but
in practice we can only calculate the empirical risk r (which depends on
the sample Sn ) :
E(ĝ) := E(ĝ − Y )2 − inf

f ∈F
E(f − Y )2, r(ĝ) =

1

n

n∑
i=1

(ĝ(Xi)− Yi)2. (1)
To solve this problem, we propose the following Stard procedure:
1) Get d empirical risk minimizers {ĝi}di=1 using snapshot technique [2].
2) Find empirical risk minimizer f̂ on set Stard(ĝ1 . . . ĝd):

Stard(ĝ1 . . . ĝd) =
⋃
f ∈F
Conv(ĝ1 . . . ĝd, f )

The model built in this way combines the fast order of the Audibert star
procedure [1], the power of the ensemble of models, and the budget con-
struction of the snapshot technique. We also take into account that min-
imization is performed inaccurately in practice. Errors from the first and
second steps we denote as ∆1 and ∆2 respectively.
Theoretical results We focused on the class of sparse fully connected
neural networks F(L, p, s) defined in [4]. Continuing the technique of
Liang et al. [3] we have obtained the fast order for excess risk both in the
sense of expectation and in the sense of deviation.
Definition 1 (Lower Isometry Bound) ClassF satisfies the lower isometry

bound with some parameters 0 < η < 1 and 0 < δ < 1 if

P

(
inf

f ∈F\{0}

1

n

n∑
i=1

f 2(Xi)
E f 2

≥ 1− η

)
≥ 1− δ

for all n ≥ n0(F , δ, η), where n0(F , δ, η) depends on the complexity of the

class of functions F .

Hulld
(
F
)
:=

{ d∑
i=1

λi(gi − f )
∣∣∣∣λi ∈ [0, 1]; d∑

i=1

λi ≤ 1; f , g1 . . . gd ∈ F
}
,

(2)
Theorem 2 Let ξi = Yi − f ∗(Xi) and f ∗ := argminf ∈F E(f (X) − Y )2. If for
Hulld the bound 1 holds with ηl ib = 1

144 and some δl ib < 1 then there exist

constant C2 = C2(K,M,A,B) and absolute constants c̃, c ′, c such that

P
(
E(f̂ ) > C2

[d log n/δ
n

+ ∆1 + ∆2

])
≤ 4(δl ib + δ)

as long as n > 16(1−c
′)2A

c ′2 ∨ n0(H, δl ib, c/4), where B := supX,Y E ξ4 and

A := sup
h∈H

E h4

(E h2)2
, K :=

√√√√ n∑
i=1

ξ2/n + 2c̃

 , M := sup
h∈H\{0}

∑n
i=1 h(Xi)2ξ2i
c̃
∑n
i=1 h(Xi)2

.

Snapshot Technique
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Snapshot Ensemble
Cyclic LR Schedule

The picture is taken from paper [2]. Themethod consists in changing l r cyclically andgetting into several local optima during theentire training, the weights of which are savedfor further construction of the ensemble.

Stard procedure
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Using the snapshot technique, weconsecutively get d models. Optimization onset Stard is performed by adding one moreneural network and optimizing its parametersalong with convex weights λ1 . . . λd+1.
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Theorem 3 Let f̂ is Stard estimator for F = F(L, p, s). The following ex-
pectation bound on excess loss holds:

E E(f̂ ) ≤ C3
(
d log n

n
+ ∆1 + ∆2

)
,

where C3 depends only on the complexity of the class of neural networks F .

Experiments Description of competitors: training one large neu-
ral network of d + 1 blocks (Big NN), learning d + 1 blocks inde-
pendently and averaging (Ensemble), learning blocks sequentially us-
ing the snapshot technique with subsequent averaging (Snap Ensemble).

Name d MSE MAE R2

Snap Star 5 10.881±0.575 2.229 0.869Snap Ensemble 5 11.862±0.616 2.306 0.858Ensemble 5 12.568±0.878 2.399 0.849Big NN 5 12.068±0.860 2.411 0.855
Snap Star 4 11.276±0.582 2.269 0.865Snap Ensemble 4 11.819±0.341 2.316 0.858Ensemble 4 12.059±0.614 2.365 0.855Big NN 4 12.556±0.904 2.383 0.849

Table 1: Boston Housing Dataset (30 epochs)
Name d accuracy entropy
Snap Star 3 0.900±0.002 0.284±0.008Snap Ensemble 3 0.897±0.003 0.290±0.009Ensemble 3 0.887±0.001 0.310±0.005Big NN 3 0.890±0.010 0.299±0.022
Snap Star 2 0.894±0.007 0.294±0.020Snap Ensemble 2 0.891±0.006 0.302±0.021Ensemble 2 0.886±0.004 0.313±0.008Big NN 2 0.892±0.003 0.304±0.007

Table 2: Fashion Mnist Dataset (5 epochs)
Conclusion We have proved the optimality and stability of Stard proce-
dure forMSEminimization in a class of sparse neural networks. In practice,
we were convinced of its performance for other tasks and types of neural
networks.
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