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Motivations and Novel Contributions
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4 Motivation Analysis ) @ . Our Novel Contribut@ons o -
Q The LeNet, which is relatively small and shallow, is hardware efficient due to its Q Analytloal models of DNN and CapsNet layers anc! operations for archlteotural flexibility and fast hardware estimation.
low memory footprint, but relatively more vulnerable to attacks. Q Analysne and selec.tlon of the aoversarlal perturbatlons_ velues to employ in the NAS for a fast robustness ev_aluetloo.
QO A more complex DNN such as the ResNet-20 has a higher memory footprint but it M Speolallzed evolutlonary elgorlthm, _bas_ed on the prlnolples of the NSGA-Il method, to perform a multi-objective Pareto-
also exhibits higher adversarial accuracy than the LeNet. frontier seleotlon, with conjoint optlmlzatloo for adverearlal robustness, energy, memory, and Iat.e.ncy of DNNSs.
QO The DeepCaps, despite having a smaller memory footprint than the ResNet-20, is O Fast ev_al_uatlon methodology for DNNs tralned for.a limited nu_mber of epochs to reduce the training time.
\__also relatively more robust against adversarial attacks. Y, \EI Full-training evaluation of the Pareto-optimal solutions to obtain the exact results. Y,
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Evaluation and Related Work Comparison

HARNAS Results in One Eps Setting
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Key Observations

1) For the HARNAS evaluated on the

CIFAR10 dataset, the latest generations
: find DNNs that are less robust to the PGD
HARNAS-MNIST - i attack, but still belong to the Pareto-
CapsNet ' fronter due to the low energy

DeepCaps i
NASCaps-MNIST consumptuon.
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Several candidate DNNs found in the
earliest generations are automatically
discarded by the Pareto-frontier selection,
since they are highly vulnerable to the
PGD attack.

A Pareto-optimal solution found by the
HARNAS framework for the CIFAR10
dataset achieves 86.07% accuracy while
— | having an energy consumption of 38.63
— ';,‘ZEF';“C‘”‘;;E'F‘”‘R"” mJ, a memory footprint of 11.85 MiB, and
—— NASCaps-CIFAR10 - a latency of 4.47 ms.
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10-4 10-3 The Pareto-optimal DNN search for

HARNAS Exact Results for Pareto-Optimal DNNs PGD attack level (¢) MNIST covers a wider range of values,
’ leveraging tradeoffs between different
objectives.

one = Two S x Capsiel ¢ Deeptaps HARNAS Results in Two Eps Setting For the MNIST dataset, the Pareto-optimal

o ® 1.0 MNIST solutions obtained with the HARNAS
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high range of perturbation €.

0.8 The accuracy starts dropping at around
one order of magnitude higher € than

HARNAS-MNIST i NASCapS,
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06 DeepCaps For the CIFAR1O dataset, the HARNAS
109 101 102 106 107 108 10-4 10-3 NASCaps-MNIST i DNNs’ behavior is similar to the
Energy [mJ] Memory footprint [B] Latency [s] 10-5 10-4 10-3 10-2 DeepCaps for low values of ¢, while a

@ OneEPS Two EPS x CapsNet ¢ DeepCaps PGD attack level () Pareto-optlmal HARNAS SO|Uthn oﬂ_‘er A
- CIFAR10 respectable robustness also with higher

adversarial perturbation.

The HARNAS framework with the Two
EPS setting, compared to the One EPS
setting, produces different levels of
robustness w.t.r. € for the MNIST dataset.

—— HARNAS-CIFAR10 For the CIFAR10 dataset, the Two EPS
e DeepCaps ! search leads to worse results than the

Lo ) ; —— NASCaps-CIFARTO : | One EPS counterpart.
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