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Abstract

Transformer-based neural networks have achieved
state-of-the-art task performance in a number of
machine learning domains including natural lan-
guage processing and computer vision. To further
improve their accuracy, recent work has explored
the integration of dynamic behavior into these
networks in the form of mixture-of-expert (MoE)
layers. In this paper, we explore the introduction
of such layers to optimize a different metric: infer-
ence latency. We introduce a novel system named
PLANER that takes an existing Transformer-based
network and a user-defined latency target and pro-
duces an optimized, sparsely-activated version
of the original network that tries to meet the la-
tency target while maintaining baseline accuracy.
We evaluate PLANER on two real-world language
modeling tasks using the Transformer-XL net-
work and achieve inference latency reductions of
over 2x at iso-accuracy.

1. Introduction

Attention-based deep neural networks (DNNs) such as
Transformer (Vaswani et al., 2017) and BERT (Devlin et al.,
2018) have been shown to exhibit state-of-the-art perfor-
mance across a variety of machine learning domains, in-
cluding natural language processing (Wolf et al., 2020) and
computer vision (Dosovitskiy et al., 2020). Due to their
size and complexity, they are expensive to train and deploy,
especially on resource-constrained hardware. In particular,
attention layers, which form the building blocks of such net-
works, account for the majority of network runtime. From
our own independent experiments, we observe that attention
layers account for over 80% of total inference latency for the
Transformer-XL network (Dai et al., 2019) on two separate
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Figure 1: Exploration results for Transformer-XL Base
model on enwik8 dataset for different latency targets.

NVIDIA GPUs: V100 and A100. Due to their outsize in-
fluence on total inference latency, recent work has explored
various approaches for runtime performance optimization
that specifically target attention layers; this includes works
such as PAR Transformer (Mandava et al., 2020) that re-
distribute attention layers within the network to optimize
performance, and various papers on pruning either attention
heads and/or entire attention layers (Wang et al., 2020).

A separate body of work has explored the addition of
sparsely activated layers to Transformer models to im-
prove task performance (Shazeer et al., 2017). In partic-
ular, mixture-of-expert (MoE) Transformer variants such as
Switch Transformer (Fedus et al., 2021) have demonstrated
state-of-the-art task performance while simultaneously im-
proving training and inference costs. While most work in
this direction has focused on improving task accuracy, in
this paper we attempt to answer the following question:
can the addition of sparsely activated layers help preserve
accuracy in the face of latency-optimizing neural transfor-
mations such as skipping/pruning attention layers? And if
so, to what extent?.

To help answer this question, we present PLANER, a novel
system for designing latency-aware sparsely activated Trans-
former networks. Given a Transformer-based model as in-
put, along with an inference latency target expressed as a
percentage of the baseline model’s latency, PLANER pro-
duces a sparsely-activated Transformer model that fulfills
the latency objective while preserving baseline accuracy.
PLANER employs an efficient two-phase gradient descent-
based neural architecture search (NAS) strategy with a dy-
namic loss formulation to achieve this. During the search
process, PLANER efficiently explores the large number of
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alternative architectures arising from different combina-
tions of feed-forward, attention (with varying number of
heads), and mixture-of-expert layers; as a concrete exam-
ple, PLANER considers over 68 billion unique architectures
for the Transformer-XL model in our evaluation. The op-
timized architecture obtained from NAS is then fine-tuned
using a load-balancing loss term to produce the final net-
work. Figure 1 demonstrates how PLANER infers differ-
ent architectures depending on the user-provided inference
latency targets. Here, each of the inferred architectures
matches baseline accuracy, but has different inference la-
tencies. Depending on the latency target, we notice that
PLANER progressively reduces the number of attention lay-
ers and their widths, while using additional MoE and/or feed
forward layers to compensate for potential accuracy drops.

We evaluate PLANER on two different Transformer-based
networks drawn from language modeling, and demonstrate
an inference latency reduction of at least 2x for each net-
work while maintaining baseline accuracy. We also compare
PLANER with prior work such as PAR Transformer (Man-
dava et al., 2020) and Sandwich Transformer (Press et al.,
2019), and with parameter-matched non-MoE implementa-
tions of the final optimized networks.

2. Searching for Efficient Transformers

We provide a brief overview of MoEs in this Section, fol-
lowed by a deep dive into PLANER’s 2-phase NAS method-
ology for finding optimal latency-aware Transformers.

2.1. Background: MoE Networks

Mixture-of-expert (MoE) networks (Masoudnia & Ebrahim-
pour, 2014) dynamically partition the input domain so that
each sub-network or “expert” specializes in one or more in-
put partitions, yielding a sparsely activated network. Recent
work has explored the application of MoE layers to effi-
ciently increase the model capacity of Transformer-based
architectures (Shazeer et al., 2017; Lepikhin et al., 2020; Fe-
dusetal., 2021; He et al., 2021). These sparsely-activated ar-
chitectures are shown to achieve similar accuracy gains with-
out the proportional increase in the computation compared
to the traditional scaling of the network parameters (Raffel
et al., 2019). In this work, we focus on applying MoE layers
to improve inference latency while maintaining baseline
accuracy.

Figure 2a depicts a general implementation of an MoE layer
with three experts. The sequence of input tokens are dis-
tributed among the experts for processing. Each token could
be processed either by one or more experts. The number of
experts per token is denoted as T'opk in this work. In Fig-
ure 2a, T'opg is equal to two. A single-layer linear classifier
called a Gate (Figure 2b) decides which expert(s) to use to
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Figure 2: General overview of MoE layers and gate function.

process a specific token. The Gate generates a probability
distribution across the experts per token, which will then be
used to select the Topx experts.

2.2. Phase 1: Exploring the Search Space

Transformer-based models are composed of multiple blocks,
where each block consists of multi-head attention (MHA)
and feed-forward layers (FFLs) (Vaswani et al., 2017).
MOoEs could thus be applied to either MHA or FFLs, or
both. In this work, we only explore MoE FFLs in the de-
sign space; this is primarily due to the runtime overhead
introduced by dynamic behavior, which we found to be pro-
hibitively high for the already expensive attention layers.
PLANER’s first phase explores the large design space com-
posed of different configurations of MHAs, FFLs, and MoE
layers. The inputs to the first phase are the design space, the
backbone of the baseline network architecture, and a target
latency, expressed as a ratio w.r.t. the baseline latency.

For real-world networks, the design space of alternative ar-
chitectures often gets prohibitively large; for instance, the
Transformer-XL Base network on the enwik8 dataset yields
a search space size of over 68 billion architectures. To
keep the search tractable, we deploy a differentiable NAS
strategy, which has been shown to be significantly more effi-
cient than reinforcement-learning-based approaches (Zoph
& Le, 2016). We follow a NAS algorithm similar to the one
proposed by Wu et al. (2019).

Phase 1 first composes a search architecture using the base-
line network’s backbone. The backbone includes details on
the number of blocks (MHA or FFLs) and their configu-
ration (number of heads or hidden dimension). Using the
input backbone, each of the MHA or FFL blocks in the base-
line network are replaced with Super Blocks (SB), which
includes all the search options in the design space. The
goal is to find the best option for each block so that overall
accuracy is maximized and the latency target is achieved.
Figure 3 depicts the formulation of super blocks. Each of
the search options Block; is accompanied by corresponding
architectural weights «;, which are trained using gradient de-
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Figure 3: Formulating super blocks from the search space.
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scent to represent the benefit factor of the search option (Wu
et al., 2019). To make the optimization graph differentiable
with respect to the architecture weights, the output of the
super block is formulated as:

Output = Z P; x Block;(Input)
i=0

s.t. P, = GumbelSoftmaz (o, [, ..., o)) (1)

Where the GumbelSo ftmax generates probability values
by sampling the Gumbel distribution based on o weights.

This formulation yields two sets of parameters to be trained
in Phase 1. The first group are the actual network weights
(Block;), and the second set are the architectural weights
(a;). Training of each parameter group is done sequentially
in each epoch, using separate optimizers.

To incorporate latency optimization in the search phase,
an auxiliary loss is formulated based on the latencies of
the search and baseline network, as well as the target la-
tency. We use an estimation for the end-to-end latency of
the search network as well as baseline in phase 1, using
lookup tables filled with individual block latencies similar
to prior work (Wu et al., 2019). Equation (2) presents the
formulation for the estimated latency which is composed of
accumulating the latencies of each super block (Lat_SB).

B n
Lat = Z Lat_SB,, s.t. Lat.SB,= Z Py; x Lat;

b=0 i=0

2

Here, Lat; represents the profiled latency of Block; in iso-

lation, and P; values correspond to the probability values

for super block of b as sampled in Equation (1) with respect
to the architecture weights.

The latency loss is implemented as the ratio of the estimated
latency of the search network (Lat) over the normalized
baseline latency with respect to the target latency.

Loss = CFEposs + 8 X Latross
s.t. Latress = Lat /| (Latpaseiine X Targety )
st. B=1 if (Latress >1) else 0 3)

During the training of the architecture weights, the latency
loss will be automatically activated depending on whether
the estimated latency of the search network is meeting the
target latency requirement. This novel dynamic functional-
ity helps the search progress towards the user latency target
without the need for additional hyper-parameter tuning.

2.3. Phase 2: Architecture Sampling and Retraining

The optimized architecture obtained from Phase 1 is now
instantiated for retraining. Since the weights of this final ar-
chitecture were shared with other search points during Phase
1, a retraining step is necessary to avoid under-fitting and to
obtain optimal accuracy. We construct the optimized archi-
tecture by selecting the blocks with the highest architecture
weight values in each super block; from our empirical eval-
uation, this sampling strategy best balances additional train-
ing overheads with accuracy compared to other approaches
such as the one described in Liu et al. (2018).

After sampling the optimized architecture, we perform a full
training from scratch using the same settings as the baseline.
Since MoE blocks may be part of the final architecture, we
incorporate an auxiliary loss to enforce a balanced load
across the experts. While we noticed that a balanced load
did not necessarily lead to higher accuracy, it did improve
the runtime of the MoE layers by reducing tail latency. We
follow the same implementation of the auxiliary loss for
load balancing (Balancep,ss) as prior work (Fedus et al.,
2021). The incorporation of the Balancery ss is also done
as: Loss = CEryss+ 08X Balancer, ss. The Balancer,oss
provides an approximation for the score of load balancing
across the experts. If the tokens are distributed uniformly
across the experts, we obtain an ideal loss value of 1.

3. Evaluation

We evaluate PLANER on two real-world language modeling
tasks and compare the performance of the latency-optimized
networks to other state-of-the-art optimized Transformer
models. We also provide a detailed analysis of the impact
of using our dynamic loss formulation.

3.1. Methodology

We use Transformer-XL (TXL) Base on the WikiText-103
(WT103) and enwik8 datasets as our baseline networks.
The backbone architecture for both datasets uses a model
dimension of 512 and an interleaved pattern of MHA with
8 heads and FFLs with an inner dimension of 2048. The
total number of blocks (MHA/FFL) is 24 and 32 for enwik8
and WT103, respectively '. The search space for phase 1
includes: (1) Skip connection, (2) MHA with 1,2, 4, or 8

"The total number of blocks is 2x of the number of Trans-
former blocks
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Figure 4: Speedups obtained by PLANER w.r.t. various base-
lines across different batch sizes, profiled on NVIDIA A100.

heads, (3) FFL with inner dimension of 2048, and (4) MoE
with inner dimension of 2048, 8 experts, where each token is
processed by either 1 or 2 experts (Topx = 1 or 2). To eval-
uate the performance of PLANER, we compare the latency
and accuracy of the optimized models with the baseline
TXL model and two prior papers: Sandwich Transformer
and PAR Transformer. We also compare PLANER in an
iso-parameter setup, which replaces the MoE with a scaled
FFL in the search space. The scaled FFL has an inner di-
mension of 16384, which results in the same number of
parameters as the MoE with 8 experts. The goal of the
iso-parameter baseline is to analyze the effectiveness of dif-
ferent model scaling solutions in compensating for accuracy
drops caused by aggressive attention pruning. The design
space is explored by deploying the 2-phase methodology
with varying target latencies (50% to 95%). All training is
performed on a cluster with 8 NVIDIA V100 GPUs.

3.2. Accuracy and Performance Trade-offs

We evaluate speedups for each individual architecture across
various batch sizes. Figure 4 shows the speedups obtained
by PLANER and the various baselines (described in Sec-
tion 3.1) across both datasets. From the Figure, we notice
that PLANER provides speedups of over 2x at larger batch
sizes. On smaller batch sizes, PAR Transformer outper-
forms PLANER; this is primarily due to the unoptimized
MOoE layers used in our current implementation. Specifi-
cally, our current implementation computes the outputs of
each expert sequentially, where a batch of sequences with
N tokens are sequentially processed in mini-batches of size

Tgﬂ. This consequently leads to under-utilization of
perts

Model wtl03 (PPL) enwik8 (BPC)
Dev Test Dev Test
Transformer-XL Base 227 234 1.114 1.088
Sandwich Transformer-XL 22.6* - 1.107 1.083
PAR Transformer-XL 22.7* - 1.121  1.119
Iso-Parameter Transformer-XL ~ 22.5 234 - -
PLANER Transformer-XL 22,5 235 1.109 1.083

Table 1: Accuracy comparison of PLANER with prior work
and baselines (scores marked with * are referenced).
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Figure 5: Correlation between target, estimated, and end-to-
end latency.

the compute units. We are currently working on a more
optimized parallel implementation of MoE layers, which
will help plug this performance gap.

Table 1 lists the accuracy numbers obtained by PLANER and
compares them with the baseline architectures.

3.3. Validating Estimated and End-to-end Runtime

In this section, we analyze the performance of the dynamic
latency loss used in phase-1. Figure 5a shows the correlation
of the input target latencies with respect to the estimated
latencies of the architectures sampled at the end of phase
1, while Figure 5b depicts the correlation of the estimated
latency with the profiled end-to-end latency. From the Fig-
ures, we notice that the latency estimated in Equation (2)
is highly correlated with real-world latency, making it an
appropriate option for PLANER’s phase-1 search.

4. Conclusion

This paper has presented PLANER, an automated system
for optimizing the inference latency of Transformer-based
networks. PLANER employs a two-phase NAS methodology
to systematically introduce sparsely activated layers into
the given network, and uses a dynamic loss formulation
to achieve user-provided latency targets while preserving
accuracy. On two real-world NLP models, PLANER achieves
inference latency reductions of over 2x at iso-accuracy.
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A. Layerwise Performance Analysis

Figure 6 presents the profiled latencies of individual blocks, normalized to the latency of default multi-head attention
configuration in TXL-Base (8 heads). Profiling is done with a model dimension of 512, target_len of 64, and batch size of
64 using NVIDIA A100 GPU. We observe three key points from the profiling experiment: first, we notice the significant
cost of the default attention configuration, which accounts for 6.2 higher runtime compared to the default FFL setup (with
inner-dimension of 2048). The second observation is the approximately linear scaling of the attention cost with respect
to the number of heads. Therefore, removing attention blocks or pruning attention heads can play a significant role in
designing efficient Transformer-based networks. The last observation is the compute efficiency of the MoE blocks compared
to both attention and iso-parametric FFL blocks, signifying the promise of using MoE blocks as a cost-effective solution to
compensate for the potential accuracy loss caused by aggressive attention pruning.
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Figure 6: Latency comparison of attention, FFL, and MoE layers normalized w.r.t. attention with 8 heads, profiled on
NVIDIA A100 GPU with batch size of 64, sequence length of 192, and half-precision.

B. PLANER Phase 1 and 2 Training Details

During phase 1, there are two sets of parameters that need to be trained. The first group of parameters are the actual network
weights (Block;), and the second set are the architecture weights («;). Training of each set is done sequentially in each
epoch, using individual optimizers. Thus each epoch of training in phase 1 consists of optimizing the network weights using
100% of the training samples, and then training the architecture weights using 20% of the randomly sampled training data.
We use soft sampling for GumbelSo ftmax during architecture optimization, and hard-sampling while training the network
weights to reduce the overheads associated with the super blocks. To ensure that neither of the network weight sets are
starved due to the hard-sampling of GumbelSo ftmazx, the architecture optimization is initially disabled for 10% of the
epochs, and an annealing temperature scheduling is used for later epochs. These settings allow the blocks to be randomly
sampled for the appropriate number of search epochs.

We use the settings published by NVIDIA (cat) for hyper-parameters. The exact hyper-parameters used for each dataset are:

* WikiText-103 - Network Weights (Phase 1 and 2): JITLamb optimizer, learning rate of 0.01, batch size of 256, target
and memory length of 192, dropout rate of 0.1 for non-MoE layers and 0.2 for MoE layers, and 40000 iterations.

* WikiText-103 - Architecture Weights (Phase 1): Adam optimizer, learning rate of 0.01, initial temperature of 5 for
the Gumbel Softmax, and temperature annealing rate of 0.6.

¢ enwik8 - Network Weights (Phase 1 and 2): JITLamb optimizer, learning rate of 0.004, batch size of 64, target and
memory length of 512, dropout rate of 0.1 for non-MoE layers and 0.3 for MoE layers, and 120000 iterations.

* enwik8 - Architecture Weights (Phase 1): Adam optimizer, learning rate of 0.01, initial temperature of 5 for the
Gumbel Softmax, and temperature annealing rate of 0.7.
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C. Evaluated Architectures

Figures 7 and 8 present the detailed architecture of all evaluated models in Section 3.2. We notice that PLANER aggressively
prunes/skips attention layers, while intelligently introducing sparsely activated layers for accuracy recovery.
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Figure 7: Evaluated architectures for WT103 dataset
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Figure 8: Evaluated architectures for enwik8 dataset

D. Repeatability Experiments

We repeat the PLANER optimization of the designs evaluated in Section 3.2 to validate the reproducibility of the experiments,
and to observe any variations in the final architectures. Figure 9 presents all the achieved accuracy and speedup numbers.
We notice that all the accuracy numbers are within 0.5% of the baseline, and speedups of over 2 are achieved. Figures 10
and 11 also present the variations in the final architectures across the two datasets. Although the architectures do not match
exactly, we notice a strong similarity in the number of heads in the attention layers. Another interesting observation from the
Figures is that MoE layers are concentrated towards the end of the networks across both datasets.
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Figure 9: Speedup and accuracy results of repeatability experiments.
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Figure 10: Explored architectures through repeatability experiment on WikiText-103 dataset.
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Figure 11: Explored architectures through repeatability experiment on enwik8 dataset.



