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Abstract

One of the most fundamental choices in neural
network design is layer width: it affects the ca-
pacity of what a network can learn and deter-
mines the complexity of the solution. The lat-
ter is often exploited when introducing informa-
tion bottlenecks, forcing a network to learn com-
pressed representations. Unfortunately, network
architecture is typically immutable once training
begins; switching to a more compressed architec-
ture requires retraining. In this paper we present
a new training strategy, Triangular Dropout, that
allows effective compression without retraining.
It provides for ordered removal of parameters by
the user after training, enabling an explicit trade-
off between performance and computational ef-
ficiency. We demonstrate the construction and
utility of the approach through two examples.
First, we formulate Triangular Dropout for au-
toencoders, creating models with configurable
compression after training. Second, we apply
Triangular Dropout to retrain the fully connected
top layer of VGG19 on ImageNet. In both cases,
we find only minimal degradation in the perfor-
mance of the pruned network for even dramatic
reductions in its number of parameters.

1. Introduction and Background

Compressing neural network representations without ap-
preciably reducing their performance is a valuable capabil-
ity in numerous compute-limited applications. In this paper
we describe a novel dropout (Srivastava et al.| 2014) tech-
nique that allows for ordered pruning of fully connected
layers after training, maximizing performance at a desired
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width without requiring additional training. This “triangu-
lar” dropout strategy amounts to masking network connec-
tions during training with a binary lower triangular matrix,
producing order in the relative importance of different con-
nections that can then be leveraged for compression.

The width of a specific network layer is perhaps most criti-
cal in the domain of autoencoding (Rumelhart et al.,|1986),
where the width of the encoding layer (along with its acti-
vation) determines the amount of information retained in an
encoded sample. The degree to which the latent variables
are independent is the subject of disentanglement research,
which introduces further properties into the latent vari-
ables. B-VAE (Higgins et al.,2017)) demonstrates that the
gaussian distributions in a variational autoencoder (VAE;
(Kingma & Welling), 2014)) can be made increasingly or-
thogonal in exchange for reconstruction accuracy. The in-
dependence and ordering of learned features can also be
enforced manually by methods such as Principal Compo-
nent Analysis Autoencoder (PCAAE; (Pham et al., 2020)).
PCAAE learns one latent variable at a time, progressively
widening the latent layer to learn additional features via ad-
ditional training.

Autoencoding makes use of the well-known trade-off be-
tween network size and capability, a relationship that holds
more generally (Amode1 & Hernandez,[2019; Kaplan et al.,
2020; McCandlish et al) [2018). This is perhaps most
well known with regards to ImageNet (Deng et al., |2009),
where a clear correlation is typically observed between net-
work size and performance (summarized nicely in Figure 1
of (Tan & Le, [2020)).

Large neural networks can be very inefficient in their use of
parameters, leading to wasted compute. Network pruning
is a technique to reduce an overparameterized network to
its essential elements, recovering a subnetwork that is sim-
ilar or even superior in performance (Blalock et al., 2020;
Frankle & Carbin, [2018)). Our method can be considered
a structured pruning technique for MLPs, in which the re-
covered subnetwork is dense. Many existing works in this
area focus on convolutional elements, such as in (Anwar
et al., 2015) (channels and kernels), (L1 et al., 2016) (fil-
ters), and (He et al.| 2017) (channels). Critically, unlike
the above works and many others (Molchanov et al., 2016
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Luo et al.;|2019), Triangular Dropout does not require fine-
tuning and is not iterative. In Section ] we explore dense
prunings recovered by Triangular Dropout on the classifi-
cation head of VGG19, an early ImageNet solution that is
well-known to be overparameterized (as evidenced by sub-
sequent works with fewer parameters (landola et al., 2016;
Tan & Le} [2020)).

2. Triangular Dropout

Triangular Dropout works by dictating the reliance of a
network on particular connections. For a fully-connected
layer of width n, processing a minibatch x of B datapoints,
the output y has size (B,n). During training, standard
dropout multiplies the output element-wise by a random
binary mask M with mean 1 — p and the same size as the
output. Triangular Dropout maintains this form, but the
mask M is populated as a binary lower triangular matrix
instead of a randomly sampled one:

Yy = MTri O) a(:L'TW + b)

where

1 0 0

1 1 0
MTM' = .

1 1 1

Here W and b are the layer weights and biases, respec-
tively, and « is some activation function. The dropout
scheme imposed by Mr,; imparts progressive levels of
dropout across the training batch, and therefore the layer
parameters. This is further visualized in Figure[T] (Left). In
the case where B > n, the rows of Mr,; are simply re-
peated until the desired size is reached. In the case where
B < n, a triangular block matrix may be used. For any
B, an approximate alternative would be to independently
sample rows such that a random number of 1s are followed
by Os.

This dropout scheme can be thought of as simultaneous
training over a variety of layer widths. Because the mask
is triangular, the jth sample in a minibatch results in layer
outputs 1 through j being non-zero. Parameters relevant to
the jth output are only updated for samples in which the
previous 7 — 1 outputs (smaller widths) are also updated.
This is not true for subsequent nodes: nodes j + 1 and on-
wards may or may not be masked when node j is utilized.
Hence the parameters related to node j can be learned with
a guarantee that the preceding j — 1 layer parameters are
also present. However they cannot rely as heavily on out-
puts 5 + 1 and beyond.
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Figure 1. Diagram of Triangular Dropout being applied in train-
ing (Left) and testing(Right). At test time, layer width can be con-
trolled by either masking layer output or copying relevant weights
into a narrower architecture.

3. Variable Compression in Autoencoders

To further elucidate the properties of Triangular Dropout
and compare it to alternative methods, we demonstrate the
construction of an autoencoder with selectable size. We
train an autoencoder on MNIST (Deng, |2012)) with a latent
size n, and use Triangular Dropout on the latent layer. Af-
ter training, we can select any level of compression < n
and produce both a valid encoding and reconstruction. We
also train autoencoders on the CelebA dataset (Liu et al.|
2015) (with image size reduced to 64x64), in order to ex-
plore Triangular Dropout on a more difficult autoencoding
task.

We compare MNIST results quantitatively (reconstruction
loss) and qualitatively (visualization of reconstruction) to
two baselines: n autoencoders that are trained for specific
latent sizes 1 through n, and PCAAE, which trains an au-
toencoder of size n progressively. PCAAE trains one latent
variable at a time and includes a correlation minimization
loss term. PCAAE also trains a separate encoder for each
latent variable, and a new decoder for each width. This
means that, like the set of standard autoencoders, PCAAE
requires n training runs.

We examine the reconstruction loss of PCAAE and individ-
ual autoencoders as their width is varies, and again as the
features from the full size (width 32) model are progres-
sively removed. Triangular Dropout is trained once with
maximum size 32 and can be pruned to a desired latent
width. These reconstruction results are shown in Figure 2}
Full architecture and training details are given in the Ap-
pendix.

For a given latent variable size z, the most performant
model (without compression) is a standard autoencoder,
the least performant is PCAAE, and in-between is Trian-
gular Dropout. The baseline models with compressed en-
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Figure 2. Reconstruction loss versus encoding size for a variety
of methods. Triangular Dropout (red) is most similar to inde-
pendent autoencoders trained at specific encoding sizes (black).
PCAAE models produced during progressive training are shown
in blue. Light gray and light blue show the reconstruction loss of
the full-size standard autoencoder and PCAAE models, respec-
tively, when the latent space is compressed to a given size.

codings do not have comparable reconstruction losses un-
less the compression is very minor. Triangular Dropout,
trained only at size 32, allows layer reduction to very small
widths with performance only slightly worse than individ-
ual autoencoders trained at those sizes. Triangular Dropout
thus approximates the behavior of any one of these autoen-
coders, while only requiring a single training run.

Figure [3] provides visualizations of the reconstructions of
each of these cases, for selected latent widths. Standard
autoencoders trained at increasing sizes (Figure[3} A) show
increasing reconstruction fidelity with increased latent size.
When features from the autoencoder of size 32 are removed
(Figure [3] B), the encoding quality is seen to quickly de-
grade. PCAAE (Figure[3] C and D) has similar reconstruc-
tion quality as the standard autoencoders when sufficient
features are present, but cannot handle more significant
compression. Triangular Dropout (Figure [3] E) has sim-
ilar reconstruction quality to the individual autoencoders,
even when the size of its latent variable is significantly re-
duced. A user of this model could select a latent size be-
tween roughly 6 and 32 and expect it to yield recognizable
digits.

We also explored the use of autoencoders on the CelebA
dataset, finding similar effects. CelebA training details and
reconstructions with various architectures are given in the
Appendix.
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Figure 3. Qualitative analysis of reconstructions. Colored bor-
ders correspond to line color in Figure A: Reconstructions
from individual autoencoders at selected sizes, with original in-
puts on the right. B: Autoencoder trained with width 32 and la-
tent features compressed to desired size. C: Reconstructions from
PCAAE checkpoint models produced by progressively training
latent channels towards a full width of 32. D: PCAAE trained
with width 32 then compressed to desired size. E: Reconstruc-
tions from Triangular Dropout trained once at size 32 and with
then compressed to given sizes.
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4. Parameter Reduction in Large MLPs

The results of our MNIST autoencoding experiments
demonstrate the primary property of a Triangular Dropout
layer: it can be compressed after training while still pro-
viding meaningful output. Hence Triangular Dropout can
be considered a pruning technique in which the model is
trained in preparation for structured compression. To moti-
vate this view, we retrain the fully connected classification
portion of VGG19 on ImageNet, using Triangular Dropout
on the two hidden layers of size 4096. We then investigate
the fidelity of the model when run at reduced widths. We
concentrate on this portion of the model because it is fully-
connected and contains the majority of VGG’s parameters
(roughly 123 million out of 143 million in total). More
specific training details are available in the appendix.

When retrained with Triangular Dropout, VGG19 does not
achieve quite the top-1 validation accuracy of the origi-
nal (69.7 percent to 72.4 percent). This is considered a
significant difference in a heavily studied benchmark like
ImageNet, but may be acceptable in a real-world scenario
when weighed with the reduction in deployment compute
that Triangular Dropout imparts.

The main takeaway is that Triangular Dropout allows the
classification portion of VGG19 to be reduced in width af-
ter training, resulting in a dense subnetwork that trades ac-
curacy for narrowness. This a known tradeoff from prior
work in network pruning (see pruning results for VGG16
on ImageNet in (Blalock et al., [2020), Figure 3). How-
ever, in contrast to prior work, Triangular Dropout enables
compression without introducing sparsity or requiring fine-
tuning or iterative training.

Our results using full-batch Triangular Dropout (batch size
4096) are summarized in Table[T]and graphically in Figure
[ Figure []also shows the effects of using batch sizes that
are fractions of the full batches and may be more practical.
In this setting, the triangular mask takes the form of a block
matrix with blocks of size 1 row by d columns, where d =
4096/ B. Full-size batches are seen to be the most stable
and perhaps most performant, but all batch sizes display
similar trends in accuracy versus width.

5. Discussion and Future Directions

Throughout our experimentation, we found that in many
cases learned networks meaningfully use only a small frac-
tion of their allocated capacity, as evidenced by their main-
tained performance after pruning. Triangular Dropout al-
lows this characteristic to be leveraged, enabling struc-
tured, often dramatic compression without significant
degradation in performance or any required retraining.
Such a capability has many practical benefits, particularly
for the deployment of large Al models in compute-limited
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Figure 4. Validation accuracy of VGG19 trained with Triangular
Dropout as the fully-connected layers are adjusted in width. Sev-
eral batch sizes are tested, reduced from the full-sized square
batch (bold). The reported validation accuracy of the original
VGG19 is show in teal.

Ablated Width Accuracy | Classif. Params | Param. Reduction

VGG19 Reference 72.4% 123,642,856 N/A
4096 (full) 69.7% 123,642,856 0.0%
2048 69.6% 57,627,624 53.4%

1024 69.2% 27,765,736 77.5%

512 67.8% 13,621,224 89.0%

256 65.3% 6,745,576 94.5%

128 61.7% 3,356,904 97.3%

64 54.9% 1,674,856 98.6%

32 38.8% 836,904 99.3%

Table 1. Accuracy and parameter numbers for VGG19 trained
with Triangular Dropout, with various layer widths after train-
ing. The first row shows reference values for the original VGG19
architecture.

scenarios (e.g. embedded and/or mobile applications).
Future studies could further the impact of the technique
through application to other types of network layers (for
instance covolutional or self-attention).
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A. Appendix
A.1. Autoencoder Experiments

In this section we detail architectures, training routines, and
additional experiments for Triangular Dropout applied to
MNIST autoencoders.

A.1.1. MNIST ARCHITECTURE AND TRAINING

For all MNIST cases the network architectures were as fol-
lows, given some encoder output size z:

Type Activation Parameters
Conv Relu 32 Ch, 9x9 Kern, Stride 1
Conv Relu 32 Ch, 7x7 Kern, Stride 1
Conv Relu 32 Ch, 3x3 Kern, Stride 1
Dense linear 4608 Inputs, z Outputs
Dense Relu z Inputs, 4608 Outputs
Trans Conv Relu 32 Ch, 3x3 Kern, Stride 1
Trans Conv Relu 32 Ch, 7x7 Kern, Stride 1
Trans Conv Relu 32 Ch, 9x9 Kern, Stride 1
Conv sigmoid 1 Ch, 3x3 Kern, Stride 1, Padd 1

Models were trained with batch size 1024 using the Adam
optimizer, with a learning rate of 0.005 that decreases by
a factor of 10 if the average epoch loss does not decrease
by at least 2% percent over the last 15 epochs. This was
repeated for 5 decreases of the learning rate. MNIST im-
ages were normalized to values between 0 and 1, and binary
cross entropy was used as the loss for reconstruction.

A.1.2. AVAILABLE WIDTH VERSUS COMPRESSION

We additionally performed experiments to test if the avail-
able encoding size affected the learned representations in
Triangular Dropout. That is, we wanted to determine
if the model utilized or ignored extra width when avail-
able. In Figure [5] we show a plot of reconstruction ac-
curacy from MNIST autoencoders trained using Triangu-
lar Dropout with maximum encoding widths of 4, 8, 16,
32, 64, 128, 256, and 512. These models were then com-
pressed back to encoding widths of 1 through 32 (or widest
available).

We found that there is a clear pattern of models with more
available width being less compressed, but also that the
overall difference in performance diminishes as available
width increases.

A.1.3. CELEBA ARCHITECTURE AND TRAINING

We used the following architecture for our CelebA exper-
iments. The VAE results described below use two paral-
lel encoding layers for the mean and variance, respectively.
Models were trained for 100 epochs with batch size 128.
We used the Adam optimizer with learning rate 0.001, de-

creasing by a factor of 10 every 30 epochs.

Type Activation Parameters
Conv Relu 128 Ch, 5x5 Kern, Stride 2
Batch Norm (Optional)
Conv Relu 128 Ch, 5x5 Kern, Stride 2
Batch Norm (Optional)
Conv Relu 64 Ch, 3x3 Kern, Stride 1
Dense Relu 7744 Inputs, 2048 Outputs
Dense linear 2048 Inputs, z Outputs
Dense Relu z Inputs, 2048 Outputs
Dense Relu 2048 Inputs, 7744 Outputs
Trans Conv Relu 128 Ch, 3x3 Kern, Stride 1
Batch Norm (Optional)
Trans Conv Relu 128 Ch, 5x5 Kern, Stride 2, Out Pad 1
Batch Norm (Optional)
Trans Conv Relu 128 Ch, 5x5 Kern, Stride 2, Out Pad 1
Conv Relu 128 Ch, 3x3 Kern, Stride 1, Pad 1
Batch Norm (Optional)
Conv Relu 128 Ch, 3x3 Kern, Stride 1, Pad 1
Batch Norm (Optional)
Conv Relu 128 Ch, 3x3 Kern, Stride 1, Pad 1
Conv sigmoid 3 Ch, 3x3 Kern, Stride 1, Pad 1
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Figure 5. MNIST reconstruction loss for widths 1 through 32 of
autoencoders trained with Triangular Dropout and a variety of
available latent widths.

A.1.4. CELEBA RECONSTRUCTIONS WITH
ALTERNATIVE ARCHITECTURES

Please see reconstruction examples on the following page.
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(A) Triangular Dropout Autoencoder
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(B) Triangular Dropout Autoencoder with Batch Normalization
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(C) Triangular Dropout Variational Autoencoder (VAE)
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Figure 6. Reconstructions of previously unseen CelebA images on various architectures using Triangular Dropout at the encoding layer.
In each case (A, B, and C), only a single model is trained, and the encoding width is pruned down to the given size.
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A.2. VGG19 Training Details

Our version of VGG19 with Triangular Dropout was cre-
ated by retraining the classification portion of VGG19. The
convolutional layers were frozen (not retrained). The con-
volutional layers output 25088 features for a given input,
which then pass through two hidden layers of size 4096,
and finally output 1000 features to be interpreted as classi-
fication scores for the image. Our model simply replaced
the two hidden layers with Triangular Dropout layers of the
same size.

We trained our model for 100 epochs using a batch size of
4096 in order to apply a full triangular mask to the batch.
We used stochastic gradient descent (SGD) with an initial
learning rate of 0.01, reducing the learning rate by a factor
of 10 every 30 epochs.

It is unclear if our model would have behaved differently
if the entire architecture were retrained, which may have
enabled Triangular Dropout to be applied to the feature
descriptors of length 25088. This is of interest because
VGG19’s 25088 features are often used as a starting point
for other image processing tasks.
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