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Abstract

Many influential areas require effective extrac-
tion and processing of graph information. Graph
neural networks (GNNs) have been a type of
powerful tools to obtain informative represen-
tations regarding both topology and node fea-
tures. With an increasing number of graph prop-
erties being proposed and analyzed (such as ho-
mophily/heterophily, edge density, motifs, and
feature distribution), numerous specific GNNs
have been designed to capture them individually.
However, most existing GNNs assume the entire
graph shares the same property, and enforce pa-
rameter sharing across all regions of the graph. In
this work, we introduce a novel class of GNNs
which adopt a node-specific aggregation scheme
with adaptive parameters. The node-specific pa-
rameters are generated according to node’s neigh-
borhood pattern and global position. By test-
ing our model on semi-supervised node classi-
fication tasks on synthetic graphs and real-world
benchmarks, we show its superiority over fixed-
parameter models. The underlying idea could be
applied as a flexible extension to different GNNs
and solve a wide range of graph tasks.

1. Introduction

Graph structured data have been widely seen in many influ-
ential areas, e.g. bioinformatics (Jiang et al., 2021; Rathi
et al., 2019), social network analysis (Qiu et al., 2018;
Li & Goldwasser, 2019), and recommendation systems
(Ying et al., 2018; Wang et al., 2019). As an irregular non-
Euclidean data structure, graph typically contains informa-
tion of both node attributes and graph structure. Graph data
mining techniques have been utilized to extract knowledge
from graphs to fulfill various downstream tasks, such as
semi-supervised node classification (Kipf & Welling, 2017),
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link prediction (Zhang & Chen, 2018), and graph classifica-
tion (Xu et al., 2019). Recently, graph neural networks have
emerged as an effective approach for these tasks.

The objective of employing GNNss is to obtain an integrated
representation of graph topology, node attributes, and some-
times edge attributes. The representation generation usually
involves a few iterations. In each iteration nodes aggregate
information from their ego-embeddings and their neighbors’
embeddings. The aggregation scheme is a major difference
among various GNNs. Most existing models adopt aggrega-
tion schemes equivalent to low-pass filters. They essentially
perform a local Laplacian smoothing (Xu et al., 2019; Kipf
& Welling, 2017; Zhu et al., 2020). Zhu et al. (2020) defines
a measurement of edge homophily. By revealing that ho-
mophily is not a trivial assumption, this work has inspired
researchers to find more universal GNN architectures which
can effectively aggregate information in both homophilic
and heterophilic graphs. From a spectral perspective, GNNs
have been extended from rigid low-pass filters to learnable
arbitrary filters (Chien et al., 2020; Luan et al., 2021; He
et al., 2021; Wang & Zhang, 2022).

In order to test GNN performance on graphs with different
properties, a variety of graph benchmarks have been devel-
oped. Recent works focus on different label (Zhu et al.,
2020) and feature distributions (Palowitch et al., 2022) as
well as enlarged graph scale (Hu et al., 2020). However, we
focus on an otherwise overlooked phenomenon: the dispar-
ity of regional patterns in graphs. That is, different regions
of a graph might have much different properties. To make
use of this characteristic, we take on the idea of dynamic
neural networks. Dynamic neural networks are able to ad-
just their architecture or parameters according to the input,
leading to higher efficiency, stronger representation power
and interpretability (Han et al., 2021).

In this work, we propose to learn node-specific param-
eters in order to adapt to regional patterns. Based on
GPRGNN (Chien et al., 2020), we propose a parameter-
adaptive graph neural network (PA-GNN), which augments
ordinary GNNs with an auxiliary parameter-generating net-
work. We demonstrate the effectiveness of PA-GNN on both
synthetic graph datasets and semi-supervised node classifi-
cation benchmarks. Our PA-GNN has comparable results on
homophily graphs, and exceeds the baseline GPRGNN on
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all heterophily benchmark datasets. Finally, we introduce
a real-world graph dataset where our model remarkably
outperforms baseline models.

2. Related Works

Graph neural networks as low-pass filters. Many
spectral-designed (Defferrard et al., 2016; Levie et al., 2018)
graph neural networks ground themselves on spectral graph
theory. Some are designed as low-pass filters whose spec-
tral response stays invariant across graphs. Some other
GNNes are designed spatially, but they have spectral inter-
pretations too. For example, GCN (Kipf & Welling, 2017),
APPNP (Klicpera et al., 2019), GIN (Xu et al., 2019) and
GAT (Velickovic et al., 2018) behave like low-pass filters
according to the analysis of Balcilar et al. (2021).

Beyond graph homophily assumptions. Homophily or
heterophily refer to the tendency for nodes from the same
class to connect or disconnect. GNNs which are low-pass
filters perform well on homophilic graphs due to the smooth-
ing effect, but they make class-specific embeddings indis-
criminative on heterophilic graphs. Recently, revisiting the
homophily assumption aroused interest in developing GNNs
with spectral adaptibility. Zhu et al. (2020) defined edge ho-
mophily H.g44. to measure graph homophily level. Hqqe is
defined as the proportion of inter-class edges over all edges.
Follow-up works invent other criteria to measure graph ho-
mophily level, including node homophily ratio H,,,q4. (Pei
et al., 2020) and class homophily H;,ss (Lim et al., 2021).
These works state that high and low homophily levels re-
quire low-pass and high-pass filters respectively. Many
graph neural networks are hence designed to learn adaptive
passband. ACMII (Luan et al., 2021) assigns channels to
low- and high-frequency signals separately. ChebyNet (Def-
ferrard et al., 2016) proposes to use the ChebyShev polyno-
mial to approximate arbitrary filters. GPRGNN (Chien et al.,
2020) directly learns individual parameters as the polyno-
mial coefficients. BernNet (He et al., 2021) uses Bernstein
polynomials and also learn the coefficients. Recently, Wang
& Zhang (2022) unify existing spectral GNNs and analyze
their expressive power. However, existing works assume all
regions of the graph share the same spectral property and
applies the same filters to all nodes.

Dynamic neural networks. The concept of dynamic neu-
ral networks (DNNS5s) has been systematically explored in
(Han et al., 2021). Dynamic parameters networks are one
category of DNNs that lift the performance efficiently. Some
DNNs generate parameters directly from input, while others
utilize task-specific information as well. For example, Kang
et al. (2017) leverage camera perspective to generate kernel
weights for image convolution. With regard to graphs, a few
recent works show the effectiveness of GNNs with adaptive
structure or parameters. Wu et al. (2019) adopt degree-
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Figure 1: Graph with different regional patterns. Node
size increases with degree. Two classes are represented by
red (light red) and blue (light blue). Deeper node color
represents larger feature scale. Blue and red edges connect
same-class nodes, while yellow edges connect different-
class nodes. We observe regions with high node density,
small node feature scale and high heterophily in the graph.

specific weights and hashing functions assisted by special
graph-level readout functions to learn graph representations
in a Hilbert kernel space. Simonovsky & Komodakis (2017)
utilize edge attributes to adapt weights for performing con-
volution on graphs.

3. Parameter-Adaptive Graph Neural
Networks

In this section, we first motivate learning node-adaptive
parameters. Then, we introduce our parameter-adaptive
graph neural network (PA-GNN) framework, including the
network structure, input and output. Finally, we explain how
our model is able to cope with complicated situations.

3.1. Advantages of dynamic parameter generating

In Figure 1, the graph has different subgraph patterns; the
three circled regions have regional patterns that is different
from the center part of the graph: In region 1 with high edge
density, the average node degree is above 5, which might
indicate more complex structural patterns to learn and higher
noise levels. In region 2, the significantly smaller feature
scale might indicate the need to use different parameter
scales. In region 3 with high heterophily, an aggregator
as a high-pass filter will perform much better than a low-
pass one. For this graph, a uniform aggregation scheme
is suboptimal for learning node representations for node
classification, bringing adaptive aggregation into our sight.
Intuitively, global positional information can be used to
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recognize the region to which a node belongs, while local
structures contain region-specific graph properties.

3.2. Notations

Let G = (V,€) denote a graph. V and & are the node
and edge sets of the graph, and the node number n = |V|.
A € R™*" is the adjacency matrix, A = A + I represents
the adjacency matrix with self loops. D is the degree matrix
of A. Ay = D~Y/2AD~/2 stands for the normalized
adjacency matrix with self loops. X € R™*¢ is the initial
node feature matrix.

3.3. Methodology

Our model consists of two major components: a parameter
network and a classification network. Our primary contri-
bution is that we use the parameter network to generate
node-specific aggregation parameters for the classification
network. The pipeline is three-step (see Figure 2): first,
the graph structure is used to produce latent positional em-
beddings to augment node features; second, the parameter
network generates node-specific parameters based on the
augmented input; third, the classification network takes the
generated parameters to predict node classes. We implement
both networks based on GPRGNN.

Adaptive universal generalized PageRank. The building
blocks of our model is GPRGNN. The Generalized PageR-
ank GNN (GPRGNN) model is proposed by Chien et al.
(2020). Given the initial node embedding H 0) ¢ Rxd,
the output node embedding is calculated by

K
Z=> Ak, HO. (1)
k=0

The added self-loops in the adjacency matrix alleviate the
over-smoothing problems of GNNs. The work proves that
different GPR weights are related to the network’s pass-
bands from the spectral perspective. With learnable vy,
GPRGNN is able to simulate arbitrary passbands in the mes-
sage passing process (with large enough K), thus leading to
good performance on heterophilic graphs.

Classification network. The classification network is im-
plemented as an N-layer GPRGNN. This network yields
the embedding for classification from two inputs: the initial
node embedding H(©) = X e R™*% and the weights ;) €
R, €V, k=0,1,2,..., N. The output embedding of node
1 for classification is given by Z; = 21]:]:0 'yik[flk H(O)]Z—.

sym

Parameter Network. The parameter network is used to
generate the node-specific GPR weights ;5. To prevent
overfitting, we decompose ;i into v;x = Vi + Ak, Where
7k is learnable parameter shared by all nodes and A~ is
the node-specific weight offset output by the parameter net-
work. We use another M-layer GPRGNN to implement the
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Figure 2: Pipeline of our proposed model PA-GNN. Blue
trapezoids represent stacked linear layers. Red colored sym-
bols denote learnable parameters. Node feature X is con-
catenated with DeepWalk embedding to produce input H,§0>
to the parameter network. H*) denotes hidden states by
GPR propagation. The parameter network produces node-
specific parameters A~,,, where ¢ is node index. These
parameters are added to a learnable node-invariant weight
v to produce the GPR weights of the classification network.
The eventual representations of node ¢, Z;, is the weighted
sum of hidden states [H®)];,k =0,1,2, ..., N.

parameter network. Let H, }go) € R"*4 denote the node fea-
tures fed into the parameter network. The output embedding

is calculated as Z, = S n, gak;l’;ymH,go). Then, node

i’s embedding [Z,); is passed through an MLP to produce
A,k =0,1,2,...,N.

Encoding global and local information The input Héo)
to the parameter network is the initial node feature vector
augmented by positional node embeddings, which are gen-
erated with DeepWalk (Perozzi et al., 2014). In DeepWalk,
nodes that connect to each other or have short paths between
them will be close in the latent embedding space, which en-
codes the region information to which a node belongs. H, 1(70)
consists of two concatenated parts: initial node feature vec-
tor goes through an MLP to reduce its dimension, and a
DeepWalk encoder extracts latent positional information
from the graph structure.

Joint training of both networks The two networks are
simultaneously optimized through gradient descent. Be-
sides the classification loss, we regularize the network with
the L;-norm of ;. Larger regularization prevents node-
specific weights ~y;; from varying too much among different
nodes, and helps PA-GNN learn better on simple graphs by
enforcing v;x =~ 7,. On complicated graphs, we may loosen
the regularization to improve the adaptability of our model.
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Table 1: Results on benchmark datasets: mean test accuracy (%) & 95% confidence interval. The best results are in bold.

Results within the confidence interval are underlined.

Cora Citeseer PubMed Computers Photo Chameleon Actor Squirrel ‘ Twitch
GCN 7521+0.38  67.301+0.35  84.274+0.01  82.52+0.32  90.54+0.21 60.96+0.78  30.594+0.23  45.66+£0.39 | 45.68+0.46
GAT 76.70+£0.42  67.20+£0.46  83.284+0.12  81.95+0.38  90.09+0.27 63.90+0.46  35.98+0.23  42.724+0.33 | 46.324+0.07
GCN-Cheby ~ 71.39£0.51  65.67£0.38  83.83+0.12  82.41£0.28  90.09£0.28 59.96+0.51  38.02+0.23  40.67+0.31 | 45.511+0.45
JKNet 73.2240.64  60.85+£0.76  82.91+0.11  77.80+£0.97  87.70+£0.70 62.92+0.49  33.411+025  44.72+0.48 | 46.031+0.48
APPNP 79.41+£0.38  68.59+0.30  85.02+0.09  81.99+0.26  91.11+0.26 51.91+0.56  38.86+0.24  34.774+0.34 | 39.98+1.24
GPRGNN 79.51+0.36  67.63+0.38  85.07+0.09  82.90+0.37  91.93+0.26 67.48+0.40  39.30+0.27  49.93+0.53 | 45.901+0.27
PA-GNN 79.4240.35  66.89+0.36  85.04+0.08  83.93+0.50  91.95+0.37 68.14+0.48  39.33+0.22  51.21+0.71 ‘ 50.64£0.14

4. Experiments

We perform semi-supervised node classification on both
synthetic graphs and real-world benchmark datasets.

4.1. Evaluation on synthetic graphs

We use contextual stochastic block models (cSBMs) (Desh-
pande et al., 2018) to generate large graphs composed of
subgraphs with different properties, in order to synthesize
graphs with mixed regional patterns. On the large graphs,
we compare our model with two baselines.

We use the original GPRGNN as the first baseline. We also
propose a baseline which first divides the graph into dif-
ferent clusters using spectral clustering, then trains a fixed-
parameter GPRGNN on each of the clusters. We name this
baseline CLGNN. CLGNN is supposed to perform well
when inter-subgraph edges are sparse. It is worth mention-
ing that by using this model, the labeled training and test
samples will be in inverse proportion to the cluster number
for each GPRGNN, which might lead to degraded perfor-
mance. Due to space limit, the dataset and experiment
details are covered in Appendix A. Our experiment reveals
that our PA-GNN framework consistently exceeds fixed-
parameter GNNs and cluster-specific GNNGs in classification
accuracy.

4.2. Evaluation on real-world graph datasets

Testing on benchmark datasets We test our framework
on benchmark datasets. We use 5 homophilic datasets: Ci-
tation networks Cora, Citeseer, PubMed (Sen et al., 2008;
Yang et al., 2016) and Amazon co-purchasing networks
Computers and Photo (McAuley et al., 2015; Shchur et al.,
2018). We also use 3 heterophilic datasets: Wiki page-
page network Chameleon and Squirrel (Rozemberczki et al.,
2021), and actor co-occurence network Actor. We summa-
rize the graph characteristics in Table 2 in the appendix,
and present the results in Table 1. Our model exceeds
GPRGNN on most benchmarks, which is partly explained
by that GPRGNN is a special case of PA-GNN when all
nodes share the same classification network parameters.

We also introduce a new graph dataset Twitch by extracting

a subset from Twitch Gamers (Rozemberczki & Sarkar,
2021), a game streaming social network dataset, in which
nodes represent users and edges represent mutual following
relationship. Node attributes contain information about
account status, content and language. Twitch shows uneven
regional properties when divided by language, thus is a
perfect example to demonstrate the advantage of learning
node-specific parameters. We statistically show the nation-
wise behaviours of users in Appendix B, including different
edge density and homophily levels. On Twitch, our model
PA-GNN exceeds GPRGNN and other baselines remarkably.
The outstanding performance may indicate that our model
has captured more nation-specific information to aid the
node classification task. Results of ablation study is shown
in Appendix C.

We want to emphasize that Twitch is not just an exception,
but a representative showing how diversified local graph pat-
terns can be. As we expand our vision to larger-scale graphs,
the regional disparity should be more visible and important.
For example, the graph patterns may be significantly differ-
ent between genders, among races and countries. Naively
dividing by clusters may result in insufficient examples
for each cluster, while our PA-GNN framework can jointly
leverage all the examples and adapt to different regions.

5. Conclusions

We reveal an overlooked phenomenon of graph datasets:
the disparity of regional patterns. Current GNNs are not
designed to adapt to different local patterns by using a uni-
form aggregation scheme for all nodes. We design a model
that can generate node-specific aggregation parameters from
augmented node features. Our model shows superior perfor-
mance on both synthetic and real-world datasets. To better
demonstrate the effectiveness of our model, we introduce a
new graph dataset Twitch, on which our model exceeds all
other models with a large margin. While we exhibit a rela-
tively simple architecture and only use DeepWalk to encode
positional information, other properties may also be utilized
to better generate the parameters, including motifs, density,
etc. Furthermore, our framework can take other spectral-
or spatial GNNs as well and can be extended to other tasks
including link prediction and graph classification.
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A. Experiment on synthetic datasets.
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Figure 3: Figures (a) to (c) show the accuracy of our model and two baseline models on synthetic datasets.

A.1. ¢SBM Synthetic Dataset

Contextual Stochastic Block Model (cSBM) is a synthetic graph generating algorithm. It models the graph as connected
communities, each community is viewed as a different class. The node features are randomly sampled from class-assigned
Gaussian distributions. A parameter ;1 controls the divergence of the Gaussian means. A controls inter-class and intra-class
densities. Positive and negative A induce homophily and heterophily in graphs respectively. The synthetic graph has
assignable average node degree d and feature dimensions p.

A.2. Experiment settings and results.

We generate subgraphs of different edge homophily level H.44. and combine them into a whole graph. Similar to the
definition of inter-class and intra-class edges, we refer to the edges as inter-subgraph and intra-subgraph edges. We use a
parameter « to represent the ratio of inter-subgraph edges over all edges. For all experiments, we use 2.5% data for training,
2.5% data for validation, and 95% data for test.

We display the performance of the three models regarding different «v. There are two equal-size classes in each of the two
subgraphs, with A = 2, —2. As « increases from 0.1 to 1, inter-subgraph edges increase and subgraphs are gradually blended.
PA-GNN consistently outperforms GPRGNN by a large margin (see Figure 3(a)). CLGNN achieves close accuracies with
PA-GNN in general.

We mix two subgraphs and control the homophily level of them by varying A\. We set a = 0.5, and set two subgraph \’s
inverse numbers. The pattern of the merged graph is controlled by a single parameter |A|. Bigger | A| means the graph has
richer sturctural information. Our model PA-GNN exceed baseline methods when || is bigger (see Figure 3(b)), showing
the model’s strong ability to capture graph topology.

We also alter subgraph number N to see how our method generalize to different settings. We set o = 0.5, Apin, =
1.2, Ajae = 1.8. The other A values are equally spaced in between. Figure 3(c) shows that PA-GNN surpasses the baselines.
With a large number of connecting subgraphs, the whole graph evolves into a mixed component, and local patterns become
indistinguishable. This may count for the reducing performance gap as N increases.

B. Statistics of Real-World Datasets

Cora Citeseer ~ PubMed  Computers  Photo Chameleon  Squirrel ~ Actor ‘ Twitch
#nodes 2708 3327 19717 13752 7650 2277 5201 7600 43703
#edges 5278 4552 44324 245861 119081 31371 198353 26659 | 1325164
#features 1433 3703 500 767 745 2325 2089 932 7
#classes 7 6 5 10 8 5 5 5 3
Hegge 0.825 0.718 0.792 0.802 0.849 0.247 0.217 0.215 0.403

Table 2: Benchmark datasets properties and statistics



PA-GNN: Parameter-Adaptive Graph Neural Networks

language  NO FI RU ES SV TH IT JA KO PT

#nodes 330 652 4821 5699 854 632 1230 1327 1215 2536
Heage 0364 0404 0372 0369 0399 0.604 0370 0377 0.616 0.352

language NL TR DA ZH CS PL HU FR DE OTHER

#nodes 701 772 503 2828 576 944 427 6799 9428 1429
Heage 0358 0323 0362 0556 0364 0411 0.402 0385 0.367  0.401

Table 3: Homophily level using target life-time in ground-truth language communities.
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Figure 4: In Twitch Gamers dataset, we demonstrate the densities of links between different ground-
truth communities grouped by language. The intra-class links outnumber inter-class links.

B.1. Existing benchmark datasets

We test our framework on some benchmark datasets. We use 5 homophilic datasets: Citation networks Cora, Citeseer,
PubMed (Sen et al., 2008; Yang et al., 2016) and Amazon co-purchasing networks Computers and Photo (McAuley
et al., 2015; Shchur et al., 2018). We also use 3 heterophilic datasets: Wiki page-page network Chameleon and Squirrel
(Rozemberczki et al., 2021), and actor co-occurence network Actor. We summarize the graph characteristics in Table 2.

B.2. Twitch Gamers: a game streaming network graph dataset

Twitch Gamers is a global game streaming dataset (Rozemberczki & Sarkar, 2021). The nodes represent users and edges
represent mutual following relationship. Node attributes contain information about account status, content and language. We
remove all accounts with English broadcast language to reduce the size of graph. To produce the classification targets, We
divide account life-time into 3 equally-sized categories. We use the other features to predict. Statistics are shown in Table 2.

The Twitch dataset graph can be well-divided with the language attribute. As shown in Figure 4, we observe that the mutual
following relationship often happens between same language users, and different languages also show significantly different
edge densities. We further analyze the edge homophily level H,q4. in each community seperately, and found a diversified
distribution (shown in Table 3). These statistics demonstrates the regional disparity of homophily level on this graph.

.
C. Ablation study
node features DeepWalk embeddings ‘ Cora Citeseer PubMed Computers Photo Chameleon Actor Squirrel Twitch
v v 79.4240.35 66.8910.36 85.0440.08 83.9340.50 91.9540.37 68.1410.48 39.334+0.22 51.2140.71 50.6410.14
v - 79.4840.38 66.851+0.53 84.5740.89 84.0940.34 91.9840.24 67.4940.40 39.5940.25 52.1540.58 46.6410.08
- v 79.2040.33 67.1540.38 84.16+1.25 83.58+0.52 92.1740.18 67.9540.54 39.31£0.22 52.8740.34 50.6240.16

Table 4: Ablation study results (mean test accuracy (%) + 95% confidence interval) on PA-GNN on benchmark datasets
with different input to the parameter network.

We conduct ablation study on the input H, ,()O) to the parameter network. We compare classification accuracy with different
input (Table 4) to the parameter network. We draw two conclusions from the results: First, some graphs show different local
patterns while other do not. Second, on the graphs with regional disparity, node position information mainly contributes to
generating optimal parameters for PA-GNN.



