Play It Cool: Dynamic Shifting Prevents Thermal Throttling

Yang Zhou !

Abstract

Machine learning (ML) has entered the mobile
era where an enormous number of ML models
are deployed on edge devices. However, running
common ML models on edge devices continu-
ously may generate excessive heat from the com-
putation, forcing the device to ’slow down” to
prevent overheating, a phenomenon called ther-
mal throttling. This paper studies the impact of
thermal throttling on mobile phones: when it oc-
curs, the CPU clock frequency is reduced, and
the model inference latency may increase dramat-
ically. This unpleasant inconsistent behavior has
a substantial negative effect on user experience,
but it has been overlooked for a long time. To
counter thermal throttling, we propose to utilize
dynamic networks with shared weights and dy-
namically shift between large and small ML mod-
els seamlessly according to their thermal profile,
i.e., shifting to a small model when the system
is about to throttle. With the proposed dynamic
shifting, the application runs consistently without
experiencing CPU clock frequency degradation
and latency increase. In addition, we also study
the resulting accuracy when dynamic shifting is
deployed and show that our approach provides a
reasonable trade-off between model latency and
model accuracy.

1. Introduction

ML models have become the de-facto building blocks for
virtually all computer vision (CV) and natural language pro-
cessing (NLP) applications. Additionally, because of the
expected lower inference latency and higher user data secu-
rity compared to cloud servers, it has become increasingly
desirable to deploy ML models on edge devices. However,
the demanding hardware requirements of ML models has

!The University of Texas at Austin 2Carnegie Mellon University.
Correspondence to: Yang Zhou <yangzhou25672 @utexas.edu>.

DyNN workshop at the 39*" International Conference on Machine
Learning, Baltimore, Maryland, USA, 2022. Copyright 2022 by
the author(s).

Feng Liang' Ting-wu Chin

2 12

Diana Marculescu

become a barrier preventing the deployment of large and
powerful models on devices with limited thermal and com-
putational resources. This paper focuses on an overlooked
thermal issue of deploying ML models on edge devices.

When running heavy workload on edge devices, heat is con-
tinuously generated, but due to the limited thermal capaci-
tance of the hardware platform, heat may not be adequately
dissipated. When temperature rises above the hardware
thermal threshold, thermal throttling is triggered. The CPU
clock frequency is thereby forced to drop, thus reducing
the temperature to protect hardware functionality. However,
the latency increases as a result. To understand the impact
of thermal throttling on mobile phones, we first conduct
experiments on two intensive tasks: continuous image clas-
sification and continuous question answering (See Fig. 1(a)).
We find that running full models continuously results in ther-
mal throttling (Fig. 1(b)). Moreover, as shown in Fig. 1(d),
due to thermal throttling, the CPU clock frequency is de-
creased and therefore the latency of the model running on
the edge device will drastically go up.

We argue that thermal throttling poses a serious threat to
mobile ML applications that are latency-critical. For exam-
ple, during real-time visual rendering for video streaming or
gaming, a sudden surge of processing latency per frame will
have substantial negative effect on user experience. Also,
modern mobile operating systems often provide special ser-
vices and applications for vision impaired individuals, such
as VoiceOver on iOS and TalkBack on Android. The user
typically interacts with mobile phones by relying completely
on speech, so the quality of these services is highly depen-
dent on the responsiveness or the latency of the application.

We propose to use weight sharing dynamic networks (Han
etal., 2021; Yu et al., 2018; Hou et al., 2020) to prevent ther-
mal throttling. The proposed dynamic shifting is depicted
in Fig. 1(c). Initially, the large model in the dynamic neural
network suite runs. When the CPU temperature is about to
exceed a set threshold, the small model in the same suite
runs instead. Then, when the CPU temperature drops and
becomes stable, the large model runs again. With the pro-
posed dynamic shifting, the application will run consistently
at the same latency and without experiencing CPU clock
frequency degradation (see Fig. 1(d)). Moreover, since the
weights are shared, no additional memory loading is needed

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

[
— ' Which category does 5 i Common
| Classificat %y = o
the picture belong to? Cat g Rl AV A AN ""3 usage
=3 \ YRR\ I i
E \Ju-l V< |- Dynamic
Question Answering NLI Answer Does the Answer Solve > _ shifting |
Questlon the Question? O
(a) Test on continuous image classification and question answering § - - - Time
(<5
OOOO =]
g L] L
False OOOO S
Large Mode o)
OOOO About to ?
—|0000|— mmd throttle? Time
> _—
La(r)eolv(l)odoel True OOOO % BER
g OOOO i - SN . A
Q000
Small Model
Time

(b) Common usage causes thermal throttling

(c) Dynamic shifting “plays it cool”

(d) Common usage vs. dynamic shifting

Figure 1. Comparison between common usage and our dynamic shifting. (a). We adopt two widely user applications: image classification
in CV and question answering natural language inference (QNLI) in NLP. (b). Common usage leads to thermal throttling, resulting in an
unpleasant "hot and slow’ experience. (c). Our method can ’play it cool’ via dynamically shifting models according to the thermal profile.
(d). Thermal throttling results in CPU frequency drop and latency increase. Our method is able to run consistently without these issues.

during model shifting. We provide details of our dynamic
shifting algorithm in section 3.

Our dynamic shifting is suitable for different types of mod-
els: convolution based slimmable networks (Yu et al., 2018)
and transformer based DynaBERT (Hou et al., 2020). Also,
we demonstrate that dynamic shifting can generalize to other
mobile CPU platforms by conducting the same experiments
on a Raspberry Pi 4B platform. In addition, we study the
resulting accuracy when dynamic shifting is deployed and
show that our approach provides a reasonable trade-off be-
tween model latency and model accuracy.

2. Related Work

Dynamic Thermal Management (DTM) has mainly fo-
cused on finding the optimal trade-off between control-
ling the temperature and maintaining performance through
hardware-based methods such as Temperature-Tracking Dy-
namic Frequency Scaling (Skadron et al., 2004), Dynamic
Voltage Scaling (Brooks & Martonosi, 2001; Huang et al.,
2000; Donald & Martonosi, 2006), Fetch and Clock gating
(Brooks & Martonosi, 2001; Manne et al., 1998; Sanchez
et al., 1997; Skadron et al., 2002), mitigating computation
(Skadron et al., 2004), hybrid DTM method (Skadron et al.,
2004), etc. These methods mainly target CPUs when run-
ning general tasks. Recently, (Benoit-Cattin et al., 2020)
have looked specifically at ML inference workloads and
have proposed to use peripheral active cooling hardware on
edge devices to control the temperature of the device. In
comparison, we propose a software-only method to prevent
thermal throttling by dynamically shifting between models
that are part of the same dynamic network (Han et al., 2021;

Algorithm 1 Dynamic Shifting Algorithm

Require: Dynamic Network: mModule, Temperature Threshold:
tLim, Derivative Threshold: gLim

Require: setModel() sets model to small or large for mModule;
findGrad() computes the derivative;

1: Initialize avgTemp, grad to O

2: mModule.setModel(LARGE)

3: while true do

4: Get cpuTemp

5: avgTemp < ax avgTemp +(1 — a) x cpuTemp
6: grad < (3 x grad + (1 —) x findGrad(avgTemp)
7: if mModule.inLarge() AND cpuTemp > tLim then
8: mModule.setModel(SMALL)

9: Clear prevAvgTemp, avgTemp, grad
10: else if mModule.inSmall() AND grad > gLim then
11: mModule.setModel(LARGE)

12: Clear prevAvgTemp, avgTemp, grad

13: endif

14: end while
Yu et al., 2018; Hou et al., 2020).

3. Dynamic Shifting

The main goal of the proposed approach is to run infer-
ence continuously within the latency constraint while not
throttling. Once the large and small models are picked, we
follow Algorithm 1 to implement dynamic shifting. We start
from the large model. When the CPU temperature exceeds
a given temperature threshold, we shift to the small model.
After shifting to the small model, the CPU temperature starts
dropping. Since the small model is less computationally
intensive, running the small model meets the throughput re-
quirement. Later, when the temperature drops and becomes
stable, the smart phone CPU reaches a thermal equilibrium,

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

£e 29

25 32

(R R

Qo Q

£ g —— Large model alone % g —— Large model alone

;§4o —— Dynamic Shifting (Ours) ; §‘40 —— Dynamic shifting (Ours)

ag al L L 1 I | I

O 1e60 500 1000 1500 2000 2500 3000 3500 O 1led 1000 2000 3000 4000 5000 6000
N T T T T T N v‘||1|||| R T T TT] T Mlln T

~Z ~

] . v 525

8 ;2 5 kS g ‘

5320 23520

6 g L— | —— ve (-

“-1.5 . - . - . - . +15 - . v . . 3 .
- 0 500 1000 1500 2000 2500 3000 3500 s 0 1000 2000 3000 4000 5000 6000
he)

c c

8 025 fr bttt | 80,275

g 8

g 0.20 ;0 250

[*ha %)

c c

g l \ §0225) |

a= 0 500 1000 1500 2000 2500 3000 3500 3 0 1000 2000 3000 4000 5000 6000

Time (second)
(a) Running ResNet50 alone vs. Dynamic Shifting between Slimmable ResNet50
1.0x and Slimmable ResNet50 0.25x on continuous Image Classification task (60
minutes)

Time (second)

(b) Running BERT w50 d50 alone vs. Dynamic Shifting between BERT w50 d50
and BERT w25 d50 on continuous Question Answering task (100 minutes)

Figure 2. The common usage v.s. the proposed dynamic shifting on CV and NLP tasks on Honor V30 Pro (Best viewed in color).

and the excessive heat is dissipated. Therefore, if the temper-
ature derivative calculated when running the small model is
close enough to zero or exceeds a negative derivative thresh-
old, we shift to the large model again for better inference
accuracy. To compute the derivative, the CPU temperature
is first smoothed out using the Exponential Moving Average
(EMA). The derivative is thereafter approximated by the
rate of change of the temperature readings. In practice, we
use EMA again to smooth out the computed derivatives to
reduce noise.

4. Experiments and Discussion

Setup, dataset, model, platform, settings. We use
slimmable networks (Yu et al., 2018) and DynaBERT (Hou
et al., 2020) for CV and NLP tasks, respectively. Mobile
phone experiments are conducted on the Honor V30 Pro'.
To run model inferences on the phone, we encapsulate Py-
Torch models into TorchScript files and build testing pro-
grams upon the published Android Studio code?. To test
the generability of our dynamic shifting, we also conduct
experiments on Raspberry Pi 4B 4GB using onnxruntime.

We find that the PyTorch torchscript can only trace a static
computation graph of the model and is not suitable for
shared weight dynamic networks. We have to trace the
large and the small models in two separate files. Once en-
capsulated in the torchscript, the large and the small model
no longer share weights, and because of this, extra mem-
ory overhead is noted when shifting between models. We
report the time taken to load in models during shifting in
Appendix A. Moreover, we want to emphasize that if true
weight sharing? is used, the extra memory overhead will not

"Phone released in 2019, CPU: Kirin 990 5G 2x2.86 GHz
Cortex-A76 & 2x2.36 GHz Cortex-A76 & 4x1.95 GHz Cortex-
ASS, CPU frequency is reported on core 7.

*https://github.com/pytorch/android-demo-app

3We found that now there is hardly a mobile framework that

Table 1. Summary of the latency and accuracy of running Dynamic
Shifting on Slimmable ResNet50 and DynaBERT on Honor V30
Pro (DS refers to our method Dynamic Shifting)

Latency (s) Accuracy
ResNet50 1.0x 0205 0761
(alone)
(Sll)lgl)mable ResNetS0 | 150 (:26.8%) 0.695 (-0.066)

BERT d0.5 w0.5
(alone + 1.4x latency)
DynaBERT

(DS + 1.4x latency)

0.217 0.900

0.211 (-2.88%) 0.893 (-0.008)

occur.

4.1. Mobile Phone Experiments

To make the comparison to running the large model alone
easier, we fix the inference latency of the small model to
have the same inference latency as the large model by in-
jecting idle time after every small model inference. We find
that the mobile phone throttling point is determined by mul-
tiple factors not only by the temperature. For this work, we
simplify the problem and only consider using CPU tempera-
ture when designing the shifting threshold. Time taken for
logging the data is measured and reported in Appendix A.
We document the experiment details in Appendix B.

4.1.1. SLIMMABLE RESNET50 EXPERIMENTS

Running ResNet50 alone throttles the device roughly at
CPU temperature 77°C (see the red line in Figure 2 (a)).
Starting from this, we set the temperature threshold to 73°C’.
The derivative threshold after EMA is set to -0.07. We shift
between the largest and the smallest model in slimmable

supports shared weights dynamic networks. Currently, to imple-
ment a true weight sharing dynamic network on mobile devices,
one must directly write a model-specific C++ or Java program.

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

ggao I M ol e ggao
232 y 232
2 PN AW
20 20
2970 2470 : . ™
£9 Eo
g5 —— Large model alone g5 —— Large model alone
I3 o . I3 P
gg 60 —— Dynamic Shifting (Ours) gg 60 —— Dynamic Shifting (Ours)
— 1ed0 500 1000 1500 2000 2500 3000 3500 — 1ed0 500 1000 1500 2000 2500 3000 3500
N N
£ 1.50 o £15 W
> >
g1.25 214
] E]
3 1.00 EA
o 913
& 0.75 =
z z
o 0 500 1000 1500 2000 2500 3000 3500 o 0 500 1000 1500 2000 2500 3000 3500

Time (second)
(a) Running ResNet50 alone vs. Dynamic Shifting between Slimmable ResNet50
x1.0 and Slimmable ResNet50 x0.25 on continuous Image Classification task (60
minutes)

Time (Second)
(b) Running BERT w50 d50 alone vs. Dynamic Shifting between BERT w50 d50
and BERT w25 d50 on continuous Question Answering task (100 minutes)

Figure 3. The common usage v.s. the proposed dynamic shifting on CV and NLP tasks on Raspberry Pi 4B (Best viewed in color).

ResNet50. From Figure 2 (a), dynamic shifting is shown
to prevent thermal throttling. The CPU temperature and
Latency remain stable throughout the entire hour of the
experiment.

We also report the accuracy and latency comparison in Ta-
ble 1. The latency is calculated by averaging all inference
latency during the experiments. The accuracy is estimated
by the ratio of large and small model. Although it may sac-
rifice some accuracy, the proposed dynamic shifting has a
faster inference speed. Most importantly, our dynamic shift-
ing approach enjoys a consistent inference. We also provide
ablation studies on the choice of different combinations of
temperature and derivative thresholds in Appendix C.

4.1.2. DYNABERT EXPERIMENTS

We find that BERT models (Devlin et al., 2018) in general
are too computationally intensive for mobile phones. (see
Appendix B). To test our approach, we choose to dynami-
cally shift between BERT d0.5 w0.5 and BERT d0.25 w0.5,
the two smallest models in the DynaBERT suite. To make
the smallest model capable to reaching a suitable operating
temperature, we increase latency to 1.4X the original BERT
d0.5 w0.5 latency. With 1.4X latency, BERT d0.5 w0.5
throttles at 70°C'. Accordingly, the temperature threshold is
set to 65°C'. The derivative threshold is set to -0.008. We
compare dynamic shifting with running BERT d0.5 w0.5
alone at the same latency is in Figure 2 (b). The CPU fre-
quency and the CPU latency also remain stable for the whole
100 minutes in the experiment. The latency and accuracy
trade-off is also shown in Table 1. Dynamic Shifting, in gen-
eral, cannot prevent BERT models from thermal throttling
because of the model’s enormous computational intensity.
However, under some limitations, dynamic shifting can still
be helpful when deploying BERT models on mobile phones.

4.2. Raspberry Pi 4B Experiments

We conduct the same experiments on Raspberry Pi 4B, aim-
ing to show that dynamic shifting can generalize well to

other mobile CPU platforms. We switch between ResNet50
1.0x and ResNet50 0.25x and between BERT d0.5 w1.0
and BERT d0.5 w0.25. Experiment setup details are in Ap-
pendix B. Unlike mobile phones, when Raspberry Pi 4B
throttles, it maintains the CPU temperature at the throttling
temperature by slightly lowering the frequency as shown
in Figure 3 (a). Therefore, after throttling, the latency for
ResNet50 rises only by 4.5% and 5.7% for BERT w1.0 d0.5.
We argue that Raspberry Pi 4B’s thermal throttling strategy
is not applicable to mobile phones since the high tempera-
ture is not suitable to wearable devices. Nevertheless, we
present the temperature and the frequency results in Figure 4
and show that dynamic shifting can stop Raspberry Pi 4B
from throttling.

5. Conclusion And Future Work

In this work, we show that thermal throttling is a serious
problem in deploying common neural networks on mobile
phone. To counter thermal throttling, we propose to use
dynamic shifting between models in dynamic networks
with shared weights based on the device CPU temperature.
Through the experiments, we demonstrate the effectiveness
of dynamic shifting in Computer Vision and Natural Lan-
guage Processing tasks under some conditions.

In this work, we only consider shifting between large and
small models. Further attempts can incorporate models with
sizes in between into the shifting iteration. Also, future
work that takes multiple factors into account when design-
ing threshold for shifting between models can potentially
perform more efficiently than ours. Besides, dynamic shift-
ing by its own is not sufficient for models that are compute
intensive such as BERT models, because even running only
the smallest model would not make the phone operate under
suitable temperature. We leave the problem for future work.

6. Acknowledge

The research is supported in part by NSF CCF Grant No.
2107085 and NSF CSR Grand No. 1815780.

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

References

Benoit-Cattin, T., Velasco-Montero, D., and Fernandez-
Berni, J. Impact of thermal throttling on long-term visual
inference in a cpu-based edge device. Electronics, 9(12):
2106, 2020.

Brooks, D. and Martonosi, M. Dynamic thermal manage-
ment for high-performance microprocessors. In Proceed-
ings HPCA Seventh International Symposium on High-
Performance Computer Architecture, pp. 171-182. IEEE,
2001.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Donald, J. and Martonosi, M. Techniques for multicore
thermal management: Classification and new exploration.
ACM SIGARCH Computer Architecture News, 34(2):78—
88, 2006.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,
Y. Dynamic neural networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021.

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., and
Liu, Q. Dynabert: Dynamic bert with adaptive width
and depth. Advances in Neural Information Processing
Systems, 33:9782-9793, 2020.

Huang, M., Renau, J., Yoo, S.-M., and Torrellas, J. A
framework for dynamic energy efficiency and tempera-
ture management. In Proceedings of the 33rd annual
ACMY/IEEE international symposium on Microarchitec-
ture, pp. 202-213, 2000.

Manne, S., Klauser, A., and Grunwald, D. Pipeline gating:
Speculation control for energy reduction. In Proceedings.
25th Annual International Symposium on Computer Ar-
chitecture (Cat. No. 98CB36235), pp. 132-141. IEEE,
1998.

Sanchez, H., Kuttanna, B., Olson, T., Alexander, M.,
Gerosa, G., Philip, R., and Alvarez, J. Thermal
management system for high performance powerpc/sup
tm/microprocessors. In Proceedings IEEE COMPCON
97. Digest of Papers, pp. 325-330. IEEE, 1997.

Skadron, K., Abdelzaher, T., and Stan, M. R. Control-
theoretic techniques and thermal-rc modeling for accurate
and localized dynamic thermal management. In Proceed-
ings Eighth International Symposium on High Perfor-
mance Computer Architecture, pp. 17-28. IEEE, 2002.

Skadron, K., Stan, M. R., Sankaranarayanan, K., Huang, W.,
Velusamy, S., and Tarjan, D. Temperature-aware microar-
chitecture: Modeling and implementation. ACM Transac-
tions on Architecture and Code Optimization (TACO), 1
(1):94-125, 2004.

Wang, A., Singh, A., Michael, J., Hill, E., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. arXiv preprint arXiv:1812.08928, 2018.

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

A. Time taken to shift between models and logging

Since TorchScript cannot trace dynamic networks, weights are not shared between the large and the small networks. We
report the extra load latency from both the phone and Raspberry Pi 4B in Table 2. The phone load models from PyTorch
Torchscripts, while the Raspberry Pi 4B uses Onnxruntime files, which internally uses PyTorch Torchscript to encapsulate
PyTorch models. We give both the mean and the standard deviation of the measurements. In each entry, the left value stands
for the latency overhead for loading the large model, while the right value stands for the latency overhead for loading the
small model.

Please note that for DynaBERT, phone uses Bert w0.5 d0.5 as the large model and Bert w0.25 d0.5 as the small model,
while the Raspberry Pi 4B uses Bert w1.0 d0.5 as the large model and Bert w0.25 d0.5 as the small model. Both phone and
Raspberry Pi 4B uses Slimmable ResNet50 1.0x as the large model and Slimmable ResNet50 0.25x as the small model.

Table 2. Extra latency from shifting between models (large/small)

Shifting Latency (s)
Phone Raspberry Pi
Slimmable

ResNet50 1.000 £ 0.252/0.997 £ 0.321 0.887 £ 0.070/0.143 £ 0.006
DynaBERT | 0.885 % 0.066/0.826 + 0.016 1.527 + 0.423/0.810 £ 0.218

While running the models, we log CPU temperature, CPU frequency, and inference latency after every inference. We report
the extra gap time from logging (without logging the memory usage) from both the phone and from Raspberry Pi 4B in
Table 2. We provide both the mean and the standard deviation of the measurements.

Table 3. Average time taken for logging

Logging Latency (s)
Phone 0.023 + 0.004
Raspberry Pi 4B 0.080 £ 0.014

B. Experiment Details
B.1. Mobile Phone Slimmable ResNet50

We select a random 224-by-224 image and run inferences of the static image continuously with no gap between consecutive
inferences. The CPU temperature is read from the built-in sensor of the phone. The CPU temperature is read after every
inference, together with CPU frequency and the model inference latency. We use the official PyTorch implementation of
Slimmable ResNet50*. The EMA coefficients o and /3 in Algorithm 1 are chosen to be 0.995 and 0.99 respectively. When
running all experiments on the phone, we keep the atmosphere in room temperature around 22°C', and we make sure the
phone is unplugged and has battery level over 70%. Besides, we kill all other tasks except the experiment app while running
the experiments.

B.2. Mobile Phone DynaBERT

We randomly select one question answer pair from the QNLI dataset from GLUE (Wang et al., 2018) as input for every
iteration of inferences. The total sum of input tokens of the question and answer pair is 128, the same as all other pairs in
the QNLI dataset. Similar to the Slimmable ResNet50 experiments, we let the phone run inference continuously with no
gap in between inputs. We use the official PyTorch implementation of DynaBERT?. The EMA coefficients we used during
experiments are the same as in Slimmable ResNet50 experiments.

As we report in the paper, BERT models in general are computationally intensive to mobile phone CPUs. The Honor V30
Pro CPU temperature rises to 80°C' in less than 32 seconds and experiences thermal throttling in less than 6 minutes when

*nttps://github.com/JiahuiYu/slimmable_networks
Shttps://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

running the full BERT d1.0, w1.0 (depth 1.0x, width 1.0x). A similar trend is seen for other BERT models with either full
depth or full width. Therefore, we choose to only use BERT models with half the width.

~
o

~

a

-~
=]

~

=]

o
O

o

vl

CPU Temperature
(Degree Celsius)
CPU Temperature
(Degree Celsius)

o
=]

—— Dynamic Shifting —— Dynamic Shifting

0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
1le9 1le9
13 14
8 8
S12 213
El El
gu gl.z
s s
1.0 11 L L " 1 1 1
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Time (second) Time (second)
Memory usage when running dynamic shifting between Slimmable ResNet50 Memory usage when running dynamic shifting between DynaBERT d0.5
1.0x and Slimmable ResNet50 0.25x w1.0 and DynaBERT d0.5 w0.25

Figure 4. The memory overhead in Bytes throughout 3600 seconds of Dynamic Shifting on Raspberry Pi 4B (temperature plots might
look slight different compared to plots in the body)

B.3. Raspberry Pi Slimmable ResNet50

We measure the CPU temperature by reading the built-in sensor inside Raspberry Pi 4B. Raspberry Pi 4B has a fixed
thermal throttling point which can be modified to any value below 85°C. To match the mobile phone setting, we set the
thermal throttling point to 80°C'. We observe from the experiments that Raspberry Pi 4B operating system starts to throttle
the frequency at around 78°C'. Therefore, we set the temperature threshold to 77°C'. For running dynamic shifting on
Slimmable ResNet50, we set the derivative threshold at -0.02. We use the same EMA coefficients as in Mobile Phone
experiments, namely, o and (3 to be 0.995 and 0.99 respectively.

B.4. Raspberry Pi DynaBERT

As in Slimmable ResNet50 experiments, we set the temperature threshold to be 77°C. We set the derivative threshold to be
-0.012, higher than the derivative threshold in Slimmable ResNet50 to give more time to run the small model to cool down
the CPU.

In the case of mobile phones, we find that using BERT d0.5 w1.0 model can throttle the CPU very quickly. In contrast, we
find that it is not the case in Raspberry Pi 4B. Therefore, we shift between BERT d0.5 w1.0 and BERT d0.5 w0.25.

C. Ablation Study

Table 4. Accuracy comparison between different combinations of temperature and derivative thresholds (Best viewed in color)

Temperature Threshold °C'
75 73 70 65
-0.005 | 0.693 0.684 0.675 0.668
Derivative -0.01 0.700 0.688 0.678 0.667
Threshold -0.07 0.710 0.701 0.684 0.671
-0.10 0.716 0.698 0.692 0.677

The temperature threshold and the derivative threshold are two hyperparameters in dynamic shifting. Different choices of the
temperature and derivative thresholds are explored. We run dynamic shifting using Slimmable ResNet50 1.0x and Slimmable
ResNet50 0.25x for 30 minutes. To compare hyperparameters, we compute the average theoretical Top-1 accuracy of the
first two stable shifting iterations. The models’ accuracy is based on the Slimmable Networks paper (0.768 for model 1.0x
and 0.638 for model 0.25x). The results are shown in Table 4.

The general trend in the Table 4 is that the accuracy is the highest in the lower left corner and the lowest in the upper right.

Play It Cool: Dynamic Shifting Prevents Thermal Throttling

Towards the lower left, the temperature threshold is the highest and the derivative threshold is the lowest. The large model
can potentially run longer, and the small model will reach the derivative threshold sooner. We choose 73°C rather than
75°C for the experiment in Figure 2 (a) to be more conservative towards thermal throttling. Also, we find that using 75°C'
makes the time running large model uneven between iterations, which can explain why in Table 1 75°C, -0.10 has average
accuracy slightly lower than the accuracy of 73°C, -0.07.

D. Memory Overhead

We include the memory usage plots from the Raspberry Pi 4B during the dynamic shifting in Figure 4. Please note that since
logging memory usage increases the logging latency, experiments are run separately. The memory usage is not logged in the
experiments presented in the body. The temperature graphs might look slightly different here than in Figure 4 as a result.

