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Theorem 1 (informal): Sparsely Activated Models of the same 
total size as Dense models can represent Lipschitz functions 
to the same accuracy as dense models while using 
exponentially fewer operations during training and inference.

Idea: increase capacity (# of parameters) without increasing compute

Examples: Switch Transformer, Scaling Transformer, Mixture-of-Experts
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Sparsely Activated Networks

Increasingly prohibitive computational 
and environmental costs of modern AI 

Moore’s law cannot keep up

Sparsification & Compression 
techniques, such as Sparsely Activated 
Networks,  have become essential…

But, they lack theoretical foundations

Our work: theoretically establish the power of 
sparsely activated networks relative to dense ones

Theoretical model of sparsely activated networks

Key idea: routing function specifies the subnetwork (a.k.a., expert)

= final layer matrix

= routing function for sparsity (zero out most positions)

= representation from non-final layers

Putting it together: composing these gives the sparse network

Target function: 
random degree 4 
polynomial on 8-dim 
input space

Random Boolean 
function interpolated 
over a 
high-dimensional 
hypercube

Takeaway: both DSM and LSH-based sparse models outperform 
or match dense models

Lemma: The DSM model captures modern networks, such as Switch Transformers 
and Scaling Transformers.

Data-dependent Sparse Models (DSM)

Locality Sensitive Hashing (LSH)-based Sparse Networks
Locality Sensitive Hashing

Hash function that maps similar points into similar buckets

Hyperplane LSH: form buckets based on multiple random hyperplanes 

LSH Networks
Data-dependent routing via LSH

Theorem 2: For learning a Lipschitz function in d-dimensions 
using a sparse network with size  we can learn to 
error   , where each forward pass takes time    . On 
the other hand, a dense model requires time     .

Model \ # activated units 256 512

Dense 69.79 70.79

DSM (50% sparse) 70.74 71.33

DSM (25% sparse) 69.8 71.68

DSM outperforms 
dense models given 
the same number of 
activated units

CIFAR-10 test 
accuracy for dense & 
DSM models

Observation: Wide and sparse models generally 
outperform narrow and dense ones

Large family of functions where sparse networks are as 
powerful as dense ones

Computational Efficiency of DSMs

● Lipschitz functions map nearby inputs to similar values
● Use a separate expert for each “small” region of input 

space
● Enough regions → small error in function approximation

Dashed curve is the target 
function graph

Piecewise constant curve is 
the learned LSH model output

Different colors correspond to 
different LSH buckets


