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Introduction DSM, LSH Models Main Theoretical Result

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Increasingly prohibitive computational Data-dependent Sparse Models (DSM)

e AlphaGo Zero

o and environmental costs of modern Al i i
Theoretical model of sparsely activated networks Large family of functions where sparse networks are as
powerful as dense ones

100 o Neural Machine Translation
e Neural Architecture Search

Moore’s law cannot keep up

e Xception o TI7 Dota 1v1

Key idea: routing function specifies the subnetwork (a.k.a., expert)

Petaflop/s-day (Training)

o — Sparsification & Compression .

il techniques, such as Sparsely Activated A = final layer matrix Theorem 1 (informal): Sparsely Activated Models of the same
Networks, have become essential... mask(z) = routing function for sparsity (zero out most positions) total size as Dense models can represent Lipschitz functions
2, Ty ledk heera el feuncEens 5(x) = representation from non-final ayers to the same accuracy as dense models while using

| exponentially fewer operations during training and inference.
Sparsely Activated Networks Putting it together: composing these gives the sparse network
Idea: increase capacity (# of parameters) without increasing compute g(a:) = (A O maSk(ZU) ) Q5(ZU) Computational Efﬁciency of DSMs
Examples: Switch Transformer, Scaling Transformer, Mixture-of-Experts Lemma: The DSM model captures modern networks, such as Switch Transformers
A A A A and Scaling Transformers. Theorem 2: For learning a Lipschitz function in d-dimensions

e T Locality Sensitive Hashing (LSH)-based Sparse Networks using a sparse network with size O(vd' /') we can learn to
error €, where each forward pass takes time O(d? log(1/¢)). On

the other hand, a dense model requires time Q(v/d’/é).

Locality Sensitive Hashing
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self-attention

[ ] self-attention
AN [ et ] Hyperplane LSH: form buckets based on multiple random hyperplanes

a; T+ b;
Switch transformer Scaling transformer hi(z) = e

LSH Networks

Hash function that maps similar points into similar buckets

Our work: theoretically establish the power of

sparsely activated networks relative to dense ones Data-dependent routing via LSH
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